
DV0 IO_A © 2015 deValirian

deValirian DV0 IO_A

Input/Output expansion board DV0 bus compatible

Features
 3 opto-coupled digital input, one of them with

frequency measurement and counting capability.

 2 Analog inputs, from 0 to 3.3V, 1mV resolution

 Both analog inputs compatible with 4-20mA

sensors

 4 open collector outputs, up to 7.5A, 30V three of

them with PWM capability (motors and RC servos)

 2 SPDT relays outputs, 5A at 250Vac

 Link led indicator

 6 micro switches to select board address

 Power supply: 5V from DV0 connector

Technical specifications
 Opto-coupled isolation: 75V

 Opto-coupled input voltage range: 4V to 50V

 Opto-coupled maximum frequency measurement:

15 KHz

 Minimum counting period: 40ms

 PWM resolution: 1/10000

 PWM frequency range: from 31Hz to 2000Hz

 Relay electric contact endurance: 100000

operations.

 Relay maximum switching frequency: 1800

operations/hr

 Analog inputs source impedance: maximum of

2.5KΩ, recommended 500Ω

 Board consumption (no relays activated): 6mA

 Board consumption (both relays activated): 134mA

 Command latency from user application to IO_A

outputs: 15ms

Fig. 1 Simplified connectors diagram

Relay outputs

Transistor outputs

Analog inputs

DV0 Bus connector

Opto-coupled

inputs

Address selector

Link indicator

DVO IO_A

DVO IO_A ©2015 deValirian

Table of contents

1. Functional overwiew ... 4

1.1 Address selection ... 4

1.2 DV0 Bus connection ... 4

1.3 Manifest ... 4

2. Electrical characteristics .. 5

2.1 Absolute maximum ratings .. 5

2.2 Opto-coupled inputs .. 5

2.2.1 Operating conditions .. 5

2.2.2 Enumeration ... 5

2.2.3 API functions ... 6

2.3 Analog inputs ... 6

2.3.1 Operating conditions .. 6

2.3.2 Enumeration ... 6

2.3.3 API functions ... 6

2.4 Relay outputs ... 7

2.4.1 Operating conditions .. 7

2.4.2 Enumeration ... 7

2.4.3 API functions ... 7

2.5 Transistor outputs ... 7

2.5.1 Operating conditions .. 8

2.5.2 API functions ... 8

3. Application notes ... 10

3.1 Managing DC motors ... 10

3.2 Managing a servomotor for RC.. 10

3.3 Connecting NPN or PNP industrial sensors ... 11

3.4 Connecting analog sensors .. 11

3.5 Measuring temperature with TMP36/37 .. 12

3.6 Controlling motorized blinds ... 12

4. Software .. 14

4.1 DV0 API functions related to IO_A .. 14

4.1.1 Creating an instance of DV0 class ... 14

4.1.2 Connecting to dv0_manager .. 15

DVO IO_A

DVO IO_A ©2015 deValirian

4.1.3 Summary of API functions related to IO_A... 16

4.1.4 API examples .. 21

5. Mechanical drawings ... 27

6. Accessories .. 28

Important notice.. 29

Revision history:

V1.0 Jan-2015

DVO IO_A

DVO IO_A ©2015 deValirian

1. FUNCTIONAL OVERWIEW

The IO_A boards continuously listen to the DV0 bus

serial lines for incoming commands from the Header.

This commands can be either a setting for an output,

or an enquiring for the actual value of an input or a

request for the IO_A manifest. Commands from the

header starts with the address of the target and every

board in the bus compares the command address with

the actual value of the address selector.

At power up, the IO_A board blinks the Link Indicator,

reporting that it is powered but not yet addressed by

the Header. When the first command that mach its

address is received, the Blink Indicator remains

continuously lighted.

1.1 Address selection

Address is selected by setting the individual switches

of the Address Selector, at it is shown in the Figure 2.

The switches involved in the address selection are

those labeled as A0 to A5, coded as a binary number

where A0 is the least significant bit and A5 the most

significant bit. The switch meaning is “1” if it is “ON”

and “0” otherwise. Factory values are all “OFF”, that

means “Normal Analog Input” and “Address = 0”. Keep

in mind that zero is not a valid address value and will

be ignored.

The binary switches codification is illustrated in the

Figure 3.

1.2 DV0 Bus connection

This receptacle connector contains receives power and

data from the Header. An extracting vertical socket

with screws is supplied with the IO_A board to facilitate

bus cabling (AWG 16..24, cross section 1.5 to 0.2 mm)

Vertical socket technical data:

 Socket reference: 20020008-D041B01LF from FCI.

 Solid/Stranded wire: AWG 16 to AWG 26

 Wire cross section: 1.5mm to 0.2mm

 Data signal A and B ESD, EFT and Surge

protection: IEC 61000-4-2 (ESD), IEC 61000-4-4

(EFT) and IEC 61000-4-5 (Surge)

Connect differential pair A to all A inputs of connected

IO boards, and pair B to all B inputs as well. Also,

connect the common data pin (0V) to all IO boards.

The output marked as 5V is the DV0 bus voltage

output.

1.3 Manifest

The manifest of IO_A, as it is seen by the API function

GetManifest is:

Board name : IO_A
PWM Outputs : 3
Pulse Inputs : 3
Analog Inputs : 2
Digital output group number 0 has 2 outputs
Digital output group number 1 has 4 outputs
Digital input group number 0 has 3 inputs

5V

0V

B

A

DV0 Bus voltage

power supply Differential pair wire B

Differential pair wire A

Common for data and

power

Fig. 4 DVO Bus connector pin out top view

A5 A4 A3 A2 A1 A0 Address value

0 (Invalid)

1

2

…

62

63

Fig. 3 Address coding example

A5 A4 A3 A2 A1 A0
ON

A
N

0
 4

-2
0

A
N

1
 4

-2
0

Fig. 2 Address Selector

Care must be taken to ensure that there are no
duplicate address board in the bus, because the
response collision will hung the boards involved
and an unpredictable behavior of the rest of the
boards is very likely.

CAUTION:

DVO IO_A

DVO IO_A ©2015 deValirian

2. ELECTRICAL CHARACTERISTICS

This chapter explains the electrical characteristics of

each IO_A input and output.

2.1 Absolute maximum ratings

Absolute maximum ratings for the IO_A board are

listed below. Exposure to these maximum rating

conditions for extended periods may affect device

reliability. Functional operation of the device at these,

or any other conditions above the parameters indicated

in the operation listings of this specification, is not

assured.

Operating ambient temperature………....-0°C to +70°C

Storage ambient temperature-55°C to +125°C

Storage ambient humidity…………………..35% to 85%

Operating ambient humidity………………..35% to 85%

Voltage at 5V DV0 connector………………………….6V

Opto-coupled inputs voltage……...………………….55V

Opto-coupled inputs reverse voltage……………..…55V

Voltage between opto-coupled inputs…………...….55V

Voltage between opto-coupled inputs and 0V……..55V

Analog inputs direct voltage…………………………3.3V

Analog inputs reverse voltage…………………..…-0.1V

Transistor output voltage…………………………..…30V

Transistor output continuous current………………....8A

Transistor output continuous reverse current……..2.8A

Voltage between relay contact and 0V……...1000VDC

Voltage between relay contacts………………..500VDC

Relay output current…………………………………....6A

2.2 Opto-coupled inputs

Figure 5 shows the simplified connection diagrams for

the three opto-coupled inputs block. There are five 2-

way headers assembled together, three of them for

each input (IN0, IN1 and IN2), one for 0V and another

one supplying 5V, for easy cabling.

To activate an input, the user must supply current to

the input marked as “+” and sink current from the input

marked as “-“. This current can be provided by the 5V

of the connector block, as it is shown in the figure 6, or

can be supplied by an independent power, as it is

discussed in the section 3.3.

When the switch S1 of Figure 6 is closed, the input In0

is “activated”, which means that when the user

application calls the function GetIndividualInput obtains

a “1”. The same applies for In1 and In2. All inputs allow

the counting pulses capability.

The input In0 has a special feature since it is capable

to measure the signal frequency if it is greater than

100Hz and lower than 15000Hz. This feature is

specially interesting in industrial applications to count

actions or to measure the speed of moving ribbons or

wheels.

2.2.1 Operating conditions

 Voltage range to activate In0, In1 and In2: from 4V

to 50V

 De-bounce time for counting function: 15ms

 Maximum frequency for counting function: 25Hz

 Counting range: from 0 to 65535. User application

is responsible for maintaining the carry on overrun

 Frequency range for frequency measure in In0:

from 100Hz to 15000Hz for an accuracy better than

5%

 On period of signal for frequency measure: 6μs

minimum

 Off period of signal for frequency measure: 32μs

minimum

2.2.2 Enumeration

From the point of view of API function, the opto-

coupled inputs are seen as follows:

Input name Group number Input number

In0 0 0

In1 0 1

In2 0 2

For GetFrequeny function the parameter

FrecuencyInput must be 0 .

In0- In0+ In1- In1- In1+ In2- In2+ 5V 5V 0V 0V

S1

Fig. 6 Opto-coupled input connection example

In0- In0+ In1- In1- In1+ In2- In2+ 5V 5V 0V 0V

Fig. 5 Opto-coupled inputs simplified diagram

DVO IO_A

DVO IO_A ©2015 deValirian

2.2.3 API functions

The following table summarizes the API functions

related to the opto-coupled inputs. See 4.1.3 for more

detailed information.

Function name Description

GetIndividualInput Returns the current state for
an individual input, where “1”
means “activated”. The
parameter Group must be
zero, and the parameter
Input must be 0, 1 or 2 for
In0, In1 and In2.

GetGroupInput Returns the current state for
each individual input, joined
in an integer, where “1”
means “activated”, In0 is the
least significant bit and In2
the most significant bit. The
parameter Group must be

zero

In2 In1 In0 Value

Off Off Off 0

Off Off On 1

Off On Off 2

Off On On 3

On Off Off 4

On Off On 5

On On Off 6

On On On 7

GetPulseCounting Returns the accumulated
counted pulses (0 to 65535)
on In0, In1 or In2

GetFrequency Returns the last frequency
measured on In0 in Hertz (0
to 65535 Hz). The parameter
FrequencyInput must be 0

2.3 Analog inputs

Figure 6 shows the simplified connection diagrams for

the two analog inputs block. There are three 2-way

headers assembled together, two of them for each

input (AN0 and AN1) and one for 0V and 3.3V, for

easy cabling.

The series resistance of 100Ω protect the analog to

digital converter of the microprocessor against

transient over voltages. Since this impedance is low

compared to the ADC internal impedance, it has an

almost negligible influence to the converting process.

If an industrial 4-20mA sensor is used, the current

supplied by the sensor can be converted to voltage

setting “ON” the switches 1 or 2, whichever is

connected to the sensor.

Since the output given by the function GetAnalogValue

is expressed in mV, to obtain the sensor current (in

mA), only a division per 100 is required. So, when

SW1 or SW2 are on and an industrial 4-20mA is

connected to AN0 or AN1, then the input current is:

Isensor = GetAnalogValue result / 100 [mA]

Both An0+ and An1+ are single ended referenced to

0V. Connect the sensor output to the input marked as

“+” and connect the sensor ground to the input marked

to “-“. Although it is not strictly required to connect the

sensor ground to the “-“ inputs, it is preferable to avoid

connecting the sensor ground whatever 0V exists: this

can cause undesirable ground noise. So connect the

sensor ground to “-“ input as well that 0V.

2.3.1 Operating conditions

 Minimum input voltage: 0V

 Maximum input voltage: 3.3V

 Sampling time: 5ms

 API result expressed in mV as an integer: from 0

(0V) to 3300 (3.3V)

 API result is the average of the last 4 samples so

the result has a great rejection to 50Hz noise

 Maximum source output impedance: 2.5KΩ

 Maximum recommended source output impedance:

500Ω

 Converter accuracy: 8mV

2.3.2 Enumeration

Input name Input number

An0 0

An1 1

2.3.3 API functions

The following table summarizes the API functions

related to the opto-coupled inputs. See 4.1.3 for more

detailed information.

Function name Description

GetAnalogValue Returns the average of the
last 4 samples, from 0 (0V)
to 3300 (3.3V).
The parameter Input must
be 0 for An0 and 1 for An1.

An0+

An0-

An1-

An1+

3.3V

0V

ADC

ADC
SW1

SW2

100Ω

100Ω

1
0

0
Ω

 1
0

0
Ω

Fig. 6 Analog inputs simplified diagram

DVO IO_A

DVO IO_A ©2015 deValirian

2.4 Relay outputs

Figure 7 shows the simplified connection diagrams for

the two relays outputs.

When the relays are not activated C0 is connected to

NC0 (Normally Close) and C1 is connected to NC1 .

These are the initial condition. Once a “1” is set as

value for SetIndividualOutput or SetGroupOutput, the

relays are energized and C0 is connected to NO0

(Normally Open) as well as C1 is connected to NO1.

2.4.1 Operating conditions

 Maximum contact current: 5A

 Rated ac voltage: 250Vac

 Electric contact endurance at 5A/250Vac: 100000

operations

 Maximum switching frequency: 1800 operations/hr

 Isolation between contacts and 0V: 1000V

2.4.2 Enumeration

Contact Group number Output number Value

NC0-C0 0 0 0

NO0-C0 0 0 1

NC1-C1 0 1 0

NO1-C1 0 1 1

2.4.3 API functions

The following table summarizes the API functions

related to the relay outputs. See 4.1.3 for more

detailed information.

Function name Description

SetIndividualOutput If the parameter Value is 1,

his functions energizes the
Relay 0 if the parameter
Output is zero or the Relay 1
if this parameter is 1. The
parameter Group must be
always zero

SetGroupOutput This function allows to
manage the two relays in
one beat. The bit 0 of the
parameter Value stands for
Relay 0 and the bit 1 of
Value stands for Relay 1.
The parameter Group must

be always zero

2.5 Transistor outputs

Figure 9 shows the simplified connection diagrams for

the four transistor driven outputs. There are four 2-way

headers assembled together, which contains the four

outputs, plus the common rail for outputs 0-1 and 2-3,

the 0V ground reference and the 5V power.

Outputs 0 to 2 can be set/reset or PWM driven while

Ouput3 can only be set or reset. In those outputs, “Set”

or “1” means that the transistor is “activated”, so a

current can flow inside the “Output”. Note that when

the transistor is not “activated”, no current is drawn

from the output. That means that loads connected to

an Output must be powered by some external source.

The diodes connected to the common rails allows the

use of inductive loads on that outputs. Those diodes

are known as “freewheeling” diode and they are

mandatory when dealing with inductive loads.

Otherwise, the transistor outputs will crash.

As the 5V present on those connectors is the same

that comes from the DV0 bus, its available current

can’t be determined, as it depends of the number and

type of boards connected to the bus. However, it is

possible to connect light loads, like LEDs, a pull-up

resistor to control RC servomotors (see example 3.2)

or a small relays. When connecting relays to 5V power,

don’t forget to connect the common rail to gain the

protection of the internal diode. Figure 10 shows a

Never, never, never let an inductive load
connected to a transistor output without the
freewheeling diode protection. Sooner or later
the transistor will crash.

CAUTION:

Out2

C01

Out0

Out1

0V

Out3

C23

5V

PWM0 PWM1 PWM2 On/off 3

Fig. 9 Transistor outputs simplified diagram

Fig. 7 Relay outputs simplified diagram

NC0 C0 NO0 NC1 C1 NO1

DVO IO_A

DVO IO_A ©2015 deValirian

small relay powered by 5V and managed by the

Output2. Note that C23 is connected to 5V.

In this example, to activate the relay, the user

application must activate the output 2, calling the

function SetIndividualOutput with parameter Group set

to “1”, parameter Output set to 2 and parameter Value

set to “1” .

Figure 11 shows how to connect a 12V DC motor to

the Output0 powered by an external supply. Note that

C01 is connected to the positive rail of the 12V power

supply and that the negative rail of that supply is

connected to the 0V common ground.

By calling SetIndividualOutput, the user application can

run the motor to its maximum power or to stop it. For

example, writing in C++ language, and assuming that

the address selection for this board is 16, then:

SetIndividualOutput(16,1,0,1); // Motor starts

SetIndividualOutput(16,1,0,0); // Motor stops

As Group is “1” for transistor outputs and Output0 is

just “0”.

Also, it is possible to control the power delivered to the

motor by using a Pulse With Modulation (PWM) as a

current form, instead of maintaining the transistor full

activated. Figure 12 shows how Output0 can be driven

using PWM.

In the above illustration, when the voltage at Output0 is

zero, the transistor is activated and current flows

through the motor. When this voltage is high, no

current flows and the motor loses energy through the

freewheeling diode. If Period is small compared to the

physics of the motor (10ms, for example), this

continuous turning on and off is not appreciated.

Controlling the ratio between the total period and the

time that the transistor is on (Ton) is an easy and

efficient way to control the power of the motor.

Let’s define the Duty Cycle (D) as

D= Ton / Period [Adimensional]

Sometimes expressed as a percent

D= 100 x Ton / Period [per cent]

Then, the greater the value of D, the greater the power

supplied to the motor. Both the Period and the D value

can be set for the Outputs 0 to 2 using he DV0 API

functions SetPWMLimits and SetPWMValue. See the

application note 3.1 and 3.2 for more explanations on

how to manage PWM outputs

2.5.1 Operating conditions

 Maximum voltage: 30V

 Maximum continuous current: 7.5A

 Maximum period time: 32ms

 Minimum period time: 500μs

2.5.2 API functions

The following table summarizes the API functions

related to the transistor outputs. See 4.1.3 for more

detailed information.

Function name Description

SetIndividualOutput If the parameter Value is 1,

his functions activates the

Voltage on Out0

t

Period

Ton

Fig. 12 PWM form

Out3

12V

Out2

C01

Out0

Out1

0V

C23

5V

Fig. 11 DC Motor externally powered

Out2

C01

Out0

Out1

0V

Out3

C23

5V

Fig. 10 Small relay connected to 5V example

DVO IO_A

DVO IO_A ©2015 deValirian

transistor of the Output that
indicates the parameter
Output. The parameter
Group must be always 1

SetGroupOutput This function allows to
manage the four Outputs
altogether. The bit 0 of the
parameter Value stands for
Output0, the bit 1 of Value
stands for Output1 and so
forth. The parameter Group
must be always 1

SetPWMValue Set the output pulse with in
steps of 0.01 percent. The
parameter Value can be in

the range of 1 (minimum
pulse with) to 10000 (100%,
maximum pulse with) for
normal output ON voltage
(0V) and from -1 to -10000
for inverted output ON
voltage
A value of 0 means that no
pulse is generated

SetPWMLimits Parameter Period,
TimeForZero and
TimeFor100 range in
microseconds (from 0 to
32000 μs)
TimeForZero sets the

minimum pulse with while
TimeFor100 sets the
maximum

DVO IO_A

DVO IO_A ©2015 deValirian

3. APPLICATION NOTES

This section contains some useful examples of IO_A

applications

3.1 Managing DC motors

The speed that a DC motor can reach depends on the

load that it has to move and on the average power

delivered to it. The average power is proportional to

the voltage and the current that flows through the

motor. So, to manage the motor power, the designer

can choice between changing the voltage or changing

the average current

The most efficiently choice is to manage the average

current by using a transistor turning on and off, quickly.

As the voltage drop on the transistor is low, the power

losses of this technique are low as well.

The IO_A board can manage up to three DC motors

using the PWM outputs 0 , 1 and 2 of the transistor

output block.

Figure 13 shows a 24V DC motor connected to a 24V

power supply and managed by the Out0.

The Motor can be full stopped or full powered by

turning on and off the Out0 using

SetIndividualOutput or SetGroupOutput (this is a

digital management) or by using SetPWMValue, which

is a proportional management. Ensure that the motor

can withstand a 24V power permanently.

Lets decide to generate a 500Hz PWM (2ms) and a full

duty span, that is, at 0% the Out0 will be disconnect

and at 100%, Out0 will be permanently activated.

Here is an example written in C language (assuming

that the board address has been set as 3)

DV0 dv0; // Create instance

int Board = 3;

// Open
int r = dv0.Open(NULL, 0, NULL, NULL)
if (r == 0) {
 // Open success, set PWM

 dv0.SetPWMLimits(Board,0,2000,0,2000);

 // Set to 50%
 dv0.SetPWMValue(Board,0,5000);

 // Set to 10%
 dv0.SetPWMValue(Board,0,1000);

 // Set to 73.21%
 dv0.SetPWMValue(Board,0,7321);

 // Set to 100%
 dv0.SetPWMValue(Board,0,10000);

 // Off
 dv0.SetPWMValue(Board,0,0);

}

3.2 Managing a servomotor for RC

Most RC Servomotors can be powered from 4.8V to

6V so it is possible to connect straightforward to the

transistor block. Although it is not mandatory, we

recommend to put an electrolytic capacitor in parallel

with the 5V output to improve the RC servo behavior.

The output control to the servo is easily obtained just

connecting a 1KΩ pull-up, as it is shown in the figure

14. In this case, for example, Out2 is used and a

1000uF electrolytic capacitor has been populated.

The cable colors code mostly used is that red means

positive supply, black is the negative one and pulse

control can be brown, orange or white, depending on

manufacturer.

The pulse itself (Out2) most often ranges from 1 ms to

2 ms, with ~1.5 ms being the neutral position. For

servos with larger ranges, you might see pulses

between 0.5 and 2.5 ms (neutral will still be around 1.5

ms).

Out2

C01

Out0

Out1

0V

C23

5V

Out3

1000uF

+

1
K

Ω

Fig. 14 Connecting a RC servomotor

Out2

C01

Out0

Out1

0V

C23

5V

24V

Fig. 13 24V DC Motor PWM managed

Out3

DVO IO_A

DVO IO_A ©2015 deValirian

Following is an example written in C language that sets

the Out2 as an RC Servomotor PWM control.

IMPORTANT: to full fit the expected control waveform,

the sign of the Duty cycle must be NEGATIVE.

DV0 dv0; // Create instance
int Board = 3;
// Open
int r = dv0.Open(NULL, 0, NULL, NULL)
if (r == 0) {
 // Open successfully, set PWM to 20ms period
 // Minimum value: 1ms, maximum value: 2ms
 dv0.SetPWMLimits(Board,2,20000,1000,2000);
 // Set to neutral
 dv0.SetPWMValue(Board,2,-5000);
 // Set to one extreme
 dv0.SetPWMValue(Board,2,-1);
 // Set to the opposite extreme
 dv0.SetPWMValue(Board,2,-10000);
 // Expand the range from 0.6ms to 2.5ms
 dv0.SetPWMLimits(Board,2,20000,600,2500);
 // Set to neutral
 dv0.SetPWMValue(Board,2,-5000);
}

3.3 Connecting NPN or PNP industrial

sensors

There are a lot of digital sensors in the industrial field

powered to 12, 24, 36 or even 48V, intended for

detecting objects, measuring inclination, light barrier,

etc. These sensors can be connected to the opto-

coupled inputs of the IO_A board easily. This section

explains how to connect those sensors depending on

the their kind of output.

Digital sensor output can be NPN or, more often, PNP.

The different is where this output is referenced: to

ground or to positive rail. Figure 15 shows a PNP

sensor connected to the Input0 while Figure 16 shows

a NPN sensor at the same input

In both figures, the rail 0V is not necessarily connected

to the 0V of IO_A, they can be isolated.

Also, whatever the kind of sensor used, from the point

of view of user application, functions like

GetIndividualInput, GetPulseCounting or

GetFrequency don’t see any difference.

3.4 Connecting analog sensors

When connecting analog sensor to the analog inputs,

the designer must take into account two points:

 The output impedance of the analog source should

be less than 2.5KΩ. As a rule, the lower, the better.

 Noise from the power supply can be propagated

and amplified by the electronic inside the sensor

itself.

For example, a resistive pressure sensor exhibits a

resistance from 1MΩ if no force is applied over it and

close to 1KΩ when 1Kg is applied. In this case, it is

mandatory to insert an operational amplifier in a buffer

configuration, as Figure 17 illustrates.

Care must be taken when selecting the operational

amplifier. Designers must check the following features:

An0+

An0-

An1-

An1+

3.3V

0V

3KΩ

Pressure

_

+

100nF

LTC1152

Fig. 17 NPN Sensor connection

In0- In0+ In1- In1- In1+ In2- In2+ 5V 5V 0V 0V

24V

0V

Out Sensor

Fig. 16 NPN Sensor connection

In0- In0+ In1- In1- In1+ In2- In2+ 5V 5V 0V 0V

24V

0V

Out
Sensor

Fig. 15 PNP Sensor connection

DVO IO_A

DVO IO_A ©2015 deValirian

 Low voltage. Ensure that the operational

amplifier can work with 3.3V.

 Rail to rail input and output. Ensure that the

operational amplifier is capable of swinging

the output from 0V to 3.3V and of accepting

input voltage from 0V to 3.3V

Finally, the 100nF capacitor smoothes the noise

present at 3.3V and the noise induced by near

equipments if wires are long.

3.5 Measuring temperature with TMP36/37

The TMP36 and the TMP37 are a 3-wires temperature

sensor that yields a voltage output proportional to the

ambient temperature. Both are suitable to be

connected to the IO_A analog inputs because:

 They operate from 2.7V to 5V, so 3.3V is correct

 They have a very low output impedance

The TMP36 output is 10mV per centigrade degree,

with an offset of 500mV at zero degrees. This sensor is

interesting if a measuring under 0ºC is desired, but it is

worth to note that IO_A analog inputs have an

accuracy of 8mV, that means an error of close to 1ºC

just measuring.

The TMP37 output is 20mV per centigrade degree

which offers a better accuracy than the TMP36, but it

can not measure temperatures below zero degrees.

Because of their low output impedance and a large

power supply rejection (less than 0.1ºC/V), a large wire

is acceptable even without filtering capacitors.

Following there is an example written in C language

that reads both sensors and computes the temperature

measured.

DV0 dv0; // Create instance
int Board = 3; int Value;
double T0, T1;
// Open
int r = dv0.Open(NULL, 0, NULL, NULL)
if (r == 0) {

 // Open successfully
 // read Analog1,(in mV)
 dv0.GetAnalogValue(Board,1,&Value);
 // And compute temperature from TMP36
 // who has an offset of 0.5V at 0ºC
 T1 = (double)(Value-500)/10.0;
 // Now, get Analog0,
 dv0.GetAnalogValue(Board,0,&Value);
 // And compute temperature from TMP37
 // who has no offset voltage
 T0 = (double)(Value)/20.0;
}

3.6 Controlling motorized blinds

Motorized blinds have two-phases motors that allows

to raise and to lower the blinds. These motors are

powered by the AC mains, which has a voltage of

125Vac up to 240Vac that can only be managed by

the contacts of the relay outputs.

Figure 19 shows an IO_A board that manages one

two-phases blinds motor and two push buttons to raise

and lower the blind. As an example, there is a

fragment of C code to manage the push buttons and

de blinds motor.

DV0 dv0; // Create instance
int Board = 3; int Value;
double T0, T1;
// Open
int r = dv0.Open(NULL, 0, NULL, NULL)
if (r == 0) {
 // Get In0 push button
 dv0.GetIndividualInput(Board,0,0,&Value);
 if (Value == 1) {
 // Push button 0 pressed
 // Activate Up phase
 dv0.SetIndividualOutput(Board,0,0,1);
 Wait(20); // Wait 20 seconds
 // Deactivate Up phase
 dv0.SetIndividualOutput(Board,0,0,0);
 }
 // Get In1 push button
 dv0.GetIndividualInput(Board,0,1,&Value);
 if (Value == 1) {
 // Push button 1 pressed
 // Activate Down phase
 dv0.SetIndividualOutput(Board,0,1,1);
 Wait(20); // Wait 20 seconds
 // Deactivate Down phase
 dv0.SetIndividualOutput(Board,0,1,0);
 }
}

These voltage levels can be lethal. Never

manipulate this cables without previously
assuring that there is no voltage on them and
that these lines are conveniently protected by a
short circuit breaker and a residual-current circuit
breaker

CAUTION:

An0+

An0-

An1-

An1+

3.3V

0V

V+
Out

V-

V+
Out

V-

Fig. 18 Connecting TMP36/37 example

TMP36

TMP37

DVO IO_A

DVO IO_A ©2015 deValirian

In0- In0+ In1- In1- In1+ In2- In2+ 5V 5V 0V 0V

NC0 C0 NO0 NC1 C1 NO1

Blinds Motor

N

Up

Down
125/230 ac

N

L1

Fig. 19 Raising and lowering blinds

Programmers must ensure that never will the
phase up and down be energized
simultaneously. Otherwise, although the motor is
thermally protected, there are some mechanical
stresses that can damage the motor

CAUTION:

DVO IO_A

DVO IO_A ©2015 deValirian

4. SOFTWARE

It is recommended to read the Software section of

Header1 prior reading this section.

4.1 DV0 API functions related to IO_A

The DV0 API contains a set of functions intended to

manage the IO_A board that can be found for Java,

C++ and Python languages.

Some examples of those functions have been

illustrated in the sections 2 and 3. This section is

intended as a formal declaration of parameters and

return values

The steps for managing the IO_A control board

programmatically are:

 Create an instance of the class DV0

 Call the function Open

 If successful, call IO_A functions related.

In the following sections, an example of each language

will be given for creating instance, for calling Open

function and for calling related functions. Also, more

complete examples can be found at the end of this

chapter.

Table 5 summarize the functions related to IO_A. Note

that only the name of the function is listed in the table

below. This is because the parameters and return

values are slightly different among the three

implementation (Java, C++ and Python).

Table 1. IO_A related functions

Name Description

Open Initial and mandatory
function to connect with
dv0_manager

SetIndividualOutput Set/reset an individual
output of a group

SetGroupOutput Set/reset all outputs
belonged to the group

SetPWMValue Set the duty cycle of a
PWM output

SetPWMLimits Set the PWM period, as
well as minimum an
maximum pulse value

GetIndividualInput Returns the state of a
particular input of a group

GetGroupInput Returns the state of all
inputs belonging to a
group

GetAnalogValue Returns the value (in mV)
of an analog input

GetPulseCounting Returns the accumulated
counted pulses on In0

GetFrequency Returns the frequency
measured on In0

4.1.1 Creating an instance of DV0 class

Java, C++ and Python are all object oriented

languages and it is useful to encapsulate all the

accessing to the API throughout one object. All

subsequent managing functions will pass through this

variable. Let’s assume that this variable will be called

dv0. For C++ or Java, the creation of this variable is

thoroughly:

DV0 dv0; // C++ or Java

And so is for Python, but slightly different (actually, It is

not a class)

import dv0

This data sheet summarizes the features of DV0

API functions related to IO_A board. It is not

intended to be a comprehensive reference

source. For more information, refer to the DV0

API Reference Guide for C++, Java and Python

at www.devalirian.com, in the Technical

Information section

WARNING:

:

http://www.devalirian.com/

DVO IO_A

DVO IO_A ©2015 deValirian

4.1.2 Connecting to dv0_manager

The connection to dv0_manager is made through the function Open.

Function Open generic description

int Open(IpAddress, Port, Login, Password);

Open connection with the dv0_manager. Mandatory for all other members. Blocking.

Parameters:
IpAddress is the IP where dv0_manager listens to incoming connections. By default
is "localhost" that suits perfectly is this application runs in the same machine that dv0_manager does.
If a remote connection is desired, call dv0_manager with the argument -ip_address followed by the IP
address of the internet interface of your board (use ifconfig to know it) and pass this value to the
current IpAddress parameter.
Port is the UDP port where dv0_manager listens to incoming connections. By default is 6900 but
DV0_manager can listen to whatever port selected by command line argument -port. In this case, give the
same value to current Port parameter. Useful only if another application had catch this port.
Login and Password are required if the dv0_manager daemon is called with -login <username>
argument. Current Login parameter must match with <username> and a valid Password must be entered

Return values
Returns 0 if connection is successful
DV_NOT_CONNECTION if dv0_manager does not respond. Check IpAddress and Port
DV_INVALID_LOGIN if dv0_manager refuses login or password

C++ Syntax

int Open(char *IpAddress = NULL, int Port = 0, char *Login = NULL, char *Password = NULL);

Java Syntax

int Open(String IpAddress, int Port, String Login, String Password);

Python Syntax

def Open(ipAddress, port, login, password):

Example: Connect to a dv0_manager running in the same Raspberry that the current program, using de default port

and with no login required. The dv0_manager call can be:

/home/pi/dv0/dv0_manager –force_date

From a C++ user program, then:

DV0 dv0;

…

int r = dv0.Open(NULL, 0, NULL, NULL)

if (r == 0) {

…

} else DisplayError(r);

From a Java user program, then:

DV0 dv0;

…

int r = dv0.Open(””, 0, ””, ””)

if (r == 0) {

…

} else DisplayError(r);

From a Python program, there are no so much differences:

import dv0

res = dv0.Open('',0,'','')

if (res == 0):

 print ("Connected to dv0_manager")

DVO IO_A

DVO IO_A ©2015 deValirian

else:

 DisplayError(res)

Example: Connect to a dv0_manager running in a Raspberry connected to internet through the interface 10.0.0.2, and

the current program running somewhere, login name ‘pi’ required (with default password ‘raspberry’) , using de default

port. The dv0_manager call can be:

/home/pi/dv0/dv0_manager –ip_address 10.0.0.2 –force_date –login pi

From a C++ and Java user program, then

DV0 dv0;

…

int r = dv0.Open(”10.0.0.2”, 0, ”pi”, ”raspberry”)

if (r == 0) {

…

} else DisplayError(r);

From a Python program, there are no so much differences:

import dv0

res = dv0.Open('10.0.0.2',0,'pi','raspberry')

if (res == 0):

 print ("Connected to dv0_manager")

else:

 DisplayError(res)

4.1.3 Summary of API functions related to IO_A

Function SetIndividualOutput generic description

int SetIndividualOutput(int Board, int Group, int Output, int Value);

Activates the "Output" belonging to "Group" if Value is 1 or deactivate otherwise

Parameters:

Pre-conditions : "Board" matches with address micro switches in board
Group can be 0 or 1.
Output can be 0 or 1 if Group is 0 (relay) or can be from 0 to 3 if group is 1 (transistor
outputs)
Default value is 0 for all outputs (deactivated)

Return codes

Returns 0 if successful or
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled
DV_INVALID_BOARD if that Board doesn't exist or it is not responding
DV_NOT_SUPPORTED if there is not such group or output in that board

C++ Syntax

int SetIndividualOutput(int Board, int Group, int Output, int Value);

Java Syntax

int SetIndividualOutput(int Board, int Group, int Output, int Value);

Python Syntax

def SetIndividualOutput(Board, Group, Output, Value):

DVO IO_A

DVO IO_A ©2015 deValirian

Function SetGroupOutput generic description

int SetGroupOutput(int Board, int Group, int Value);

Set all outputs of that "Group" to 0 or 1 (deactivated or activated) depending on bits of
"Value" where bit 0 acts over the less significant Out of that group. Non existent outputs
should set to 0

Parameters:

Pre-conditions : "Board" matches with address micro switches in board
Group from 0 to 1, Value from 0 to 3 if Group is 0 or from 0 to 7 if Group is 1
Default values are all zero (deactivated)
Return codes

Returns 0 if successful or
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled
DV_INVALID_BOARD if that Board doesn't exist or it is not responding
DV_NOT_SUPPORTED if there is not such group in that board

C++ Syntax

int SetGroupOutput(int Board, int Group, int Value);

Java Syntax

int SetGroupOutput(int Board, int Group, int Value);

Python Syntax

def SetGroupOutput(Board, Group, Value):

Function SetPWMValue generic description

int SetPWMValue(int Board, int Output, int Value);

Set the output pulse with in steps of 0.01 percent. The output pulse is zero volt during the
ON period if Value is positive or is left open if Value is negative
Parameters:

Pre-conditions : "Board" matches with address micro switches in board
Output from 0 to 3
Value from 1 (minimum pulse with) to 10000 (100%, maximum pulse with) for normal output ON
voltage and from -1 to -10000 for inverted output ON voltage. A value of 0 means that no
pulse is generated
Default value is zero

Return codes

Returns 0 if successful or
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled
DV_INVALID_BOARD if that Board doesn't exist or it is not responding
DV_NOT_SUPPORTED if there is not such output in that board

C++ Syntax

int SetPWMValue(int Board, int Output, int Value);

Java Syntax

int SetPWMValue(int Board, int Output, int Value);

Python Syntax

def SetPWMValue(Board, Output, Value):

DVO IO_A

DVO IO_A ©2015 deValirian

Function SetPWMLimits description

int SetPWMLimits(int Board, int Output, int Period, int TimeForZero, int TimeFor100);

Define the limits and behavior of PWM.
For example, typical RC Model servo expects a 20ms period pulse with a minimum value of 1ms
(servo to left) and a maximum of 2ms (servo to right) which means:
 SetPWMValue(board, output, 20000, 1000, 2000)
and to center the servo, just order a 50% setting:
 SetPWMValue(board, output, 5000) or whatever other value in between
Default values are Period = 20000, TimeForZero = 1000 and TimeFor100 = 2000

Parameters:

Pre-conditions : "Board" matches with address micro switches in board
Output from 0 to 3
TimeForZero and TimeFor100 in micro seconds (from 0 to 32000 μs)
Period in micro seconds (from 500 to 32000 μs)

Return codes

Returns 0 if successful or
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled
DV_INVALID_BOARD if that Board doesn't exist or it is not responding
DV_NOT_SUPPORTED if there is not such output in that board

C++ Syntax

int SetPWMLimits(int Board, int Output, int Period, int TimeForZero, int TimeFor100);

Java Syntax

int SetPWMLimits(int Board, int Output, int Period, int TimeForZero, int TimeFor100);

Python Syntax

def SetPWMLimits(Board, Output, Period, TimeForZero, TimeFor100):

Function GetIndividualInput description

int GetIndividualInput(int Board, int Group, int Input, int *Value);

Fills Value with the current opto-coupled input value
Parameters:

Pre-conditions : "Board" matches with address micro switches in board
Group: always 0
Input: from 0 to 2

Return codes

Returns 0 if successful or
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled
DV_INVALID_BOARD if that Board doesn't exist or it is not responding
DV_NOT_SUPPORTED if there is not such input or group in that board

C++ Syntax

int GetIndividualInput(int Board, int Group, int Input, int *Value);

Java Syntax

int GetIndividualInput(int Board, int Group, int Input, int Value[]);

Python Syntax

def GetIndividualInput(Board, Group, Input):
Returns a 2-elements tuple containing the current value of this input and the return code

DVO IO_A

DVO IO_A ©2015 deValirian

Function GetGroupInput description

int GetGroupInput(int Board, int Group, int *Value);

Fills *Value with all current opto-coupled input values. In0 is represented on Bit0, In1 on
Bit1 and In2 on Bit2.
Parameters:

Pre-conditions : "Board" matches with address micro switches in board
Group: always 0

Return code

Returns 0 if successful or
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled
DV_INVALID_BOARD if that Board doesn't exist or it is not responding
DV_NOT_SUPPORTED if there is not such group in that board

C++ Syntax

int GetGroupInput(int Board, int Group, int *Value);

Java Syntax

int GetGroupInput(int Board, int Group, int Value[]);

Python Syntax

def GetGroupInput (Board, Group, Input):
Returns a 2-elements tuple containing the current value of all opto-coupled inputs and
the return code

Function GetAnalogValue description

int GetAnalogValue(int Board, int Input, int *Value);

Fills Value[0] with current input voltage in mV, from 0 (0V) to 3300 (3.3V)
Parameters:

Pre-conditions : "Board" matches with address micro switches in board
Input: from 0 to 1

Return code

Returns 0 if successful or
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled
DV_INVALID_BOARD if that Board doesn't exist or it is not responding
DV_NOT_SUPPORTED if there is not such input in that board

C++ Syntax

int GetAnalogValue(int Board, int Input, int *Value);

Java Syntax

int GetAnalogValue(int Board, int Input, int Value[]);

Python Syntax

def GetAnalogValue (Board, Input):
Returns a 2-elements tuple containing the voltage detected on such Input
and a return code

DVO IO_A

DVO IO_A ©2015 deValirian

Function GetPulseCounting description

int GetPulseCounting(int Board, int CountInput, int *Value);

Fills Value[0] with the accumulated counted pulses(0 to 65535) on the opto-coupled input 0
Parameters:

Pre-conditions : "Board" matches with address micro switches in board
CountInput: from 0 to 2

Return code

Returns 0 if successful or
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled
DV_INVALID_BOARD if that Board doesn't exist or it is not responding
DV_NOT_SUPPORTED if CountInput is not 0, 1 or 2
C++ Syntax

int GetPulseCounting(int Board, int CountInput, int *Value);

Java Syntax

int GetPulseCounting(int Board, int CountInput, int Value[]);

Python Syntax

def GetPulseCounting (Board, CountInput):
Returns a 2-elements tuple containing the count input value for In0
and a return code

Function GetFrequency description

int GetFrequency(int Board, int FrequencyInput, int *Value);

Fills Value[0] with the current frequency in Hertz (100 to 15000 Hz) measured on the opto-
coupled input 0
Parameters:

Pre-conditions : "Board" matches with address micro switches in board
FrequencyInput: from 0 to 2, BUT ONLY input 0 measures frequency. Inputs 1 and 2 always
return 0

Return code

Returns 0 if successful or
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled
DV_INVALID_BOARD if that Board doesn't exist or it is not responding
DV_NOT_SUPPORTED if FrequencyInput is not 0, 1 or 2

C++ Syntax

int GetFrequency(int Board, int FrequencyInput, int *Value);

Java Syntax

int GetFrequency(int Board, int FrequencyInput, int Value[]);

Python Syntax

def GetFrequency (Board, FrequencyInput):
Returns a 2-elements tuple containing the frequency measured at In0
and a return code

DVO IO_A

DVO IO_A ©2015 deValirian

4.1.4 API examples

In this section, a complete example of how to manage Header1 related functions are described both in C++ and

Python languages. Java example is omitted because it is so close to C++ that only adds confusion. However, there is

an example of how to program an Android APP with the DV0 API, that is not included in this section for the benefit of

simplicity but it can be found at www.devalirian.com, inside the Technical Information section.

4.1.4.1. C++ ExampleIO_A.cpp

#include <iostream>
#include <stdio.h>
using namespace std;
#include "DV0.h"

char *ServAddress = NULL;
char *LoginName = NULL;
char *Password = NULL;
int Port = 0;
DV0 dv0;

void DisplayError(int r);
void DoTest(void);
int input (char *text);

int main() {
 int r;
 // Trying to connect
 r = dv0.Open(ServAddress, Port, LoginName, Password);
 if (r == 0) {
 cout << "Connection to dv0_manager successful " << endl;
 DoTest();
 } else DisplayError(r);
 return r;
}

void DoTest(void) {
 int board, group, output, value, res, option, period, timeForZero, timeFor100;
 int Input;
 unsigned int Uvalue;
 // Print menu
 cout << "1-SetIndividualOutput 2-SetGroupOutput 3-SetPWMOutput" << endl;
 cout << "4-SetPWMLimits 5-GetIndividualInput 6-GetGroupInput" << endl;
 cout << "7-GetAnalogInput 8-GetPulseCounting 9-GetFrequency" << endl;
 cout << "10-Get Manifest 0-Exit" << endl;
 // Get user option
 cin >> option;
 // And execute
 switch (option) {
 case 1:
 //--Individual output example
 board = input ("Enter board address:");
 group = input ("Enter group :");
 output= input ("Enter output:");
 value = input ("Enter value (1/0):");
 res = dv0.SetIndividualOutput(board, group, output, value);
 DisplayError(res);
 break;
 case 2:
 // --- Group output example
 board = input ("Enter board address:");
 group = input ("Enter group :");
 value = input ("Enter value :");
 res = dv0.SetGroupOutput(board, group, value);
 DisplayError(res);
 break;
 case 3:
 // --- Set PWM value example
 board = input ("Enter board address:");
 output= input ("Enter output:");
 value = input ("Enter value (0 to 10000) :");

http://www.devalirian.com/

DVO IO_A

DVO IO_A ©2015 deValirian

 res = dv0.SetPWMValue(board, output, value);
 DisplayError(res);
 break;
 case 4:
 // --- Set PWM limits example
 board = input ("Enter board address:");
 output= input ("Enter output:");
 period= input ("Enter period(us):");
 timeForZero= input ("Enter time for zero(us):");
 timeFor100 = input ("Enter time for 100%(us):");
 res = dv0.SetPWMLimits(board, output, period, timeForZero, timeFor100);
 DisplayError(res);
 break;
 case 5:
 // --- Get Individual Input example
 board = input ("Enter board address:");
 group = input ("Enter group :");
 Input = input ("Enter input:");
 res = dv0.GetIndividualInput(board, group, Input, &value);
 if (res == DV0_OK)
 cout << "Value: " << value << endl;
 else
 DisplayError(res);
 break;
 case 6:
 // --- Get Group Input example
 board = input ("Enter board address:");
 group = input ("Enter group :");
 res = dv0.GetGroupInput(board, group, &value);
 if (res == DV0_OK)
 cout << "Value: " << value << endl;
 else
 DisplayError(res);
 break;
 case 7:
 // --- Get Analog Input example
 board = input ("Enter board address:");
 Input = input ("Enter input:");
 res = dv0.GetAnalogValue(board, Input, &value);
 if (res == DV0_OK)
 printf("Value: %3.3f V\n", (double)value/1000.0);
 else
 DisplayError(res);
 break;
 case 8:
 // --- Get Pulse counting example
 board = input ("Enter board address:");
 Input = input ("Enter input:");
 res = dv0.GetPulseCounting(board, Input, &Uvalue);
 if (res == DV0_OK)
 cout << "Value: " << Uvalue << endl;
 else
 DisplayError(res);
 break;
 case 9:
 // --- Get Frequency example
 board = input ("Enter board address:");
 Input = input ("Enter input:");
 res = dv0.GetFrequency(board, Input, &value);
 if (res == DV0_OK)
 cout << "Value: " << value << endl;
 else
 DisplayError(res);
 break;
 case 10:
 // --- Get Manifest example
 board = input ("Enter board address:");
 char description [756];
 res = dv0.GetBoardManifest(board, description);
 if (res == DV0_OK)
 cout << "Value: " << description << endl;
 else
 DisplayError(res);
 break;

DVO IO_A

DVO IO_A ©2015 deValirian

 }
}

int input (char *text) { int option;
 cout << text;
 cin >> option;
 return option;
}

void DisplayError(int error) {
 switch (error) {
 case DV_NOT_CONNECTION:

cout << "dv0_manager does not respond. Check IpAddress and Port" << endl; break;
 case DV_INVALID_LOGIN: cout << "dv0_manager refuses login or password" << endl; break;
 case DV_NOT_CONNECTED: cout << "DVO header board is not connected" << endl; break;
 case DV_INVALID_BOARD: cout << "Invalid board address" << endl; break;
 case DV_NOT_SUPPORTED: cout << "Invalid peripheral" << endl; break;
 case DV0_OK: break;
 default: cout << "Unexpected error code" << endl; break;
 }
}

DVO IO_A

DVO IO_A ©2015 deValirian

4.1.4.2. Python ExampleIO.py

import sys

import dv0

def DisplayError(error):

 if error == 0:

 return

 if error == dv0.DV_NOT_CONNECTION:

 print ("dv0_manager does not respond. Check IpAddress and Port")

 elif error == dv0.DV_INVALID_LOGIN:

 print ("dv0_manager refuses login or password")

 elif error == dv0.DV_NOT_CONNECTED:

 print ("DVO header board is not connected")

 elif error == dv0.DV_INVALID_BOARD:

 print ("Invalid board address")

 elif error == dv0.DV_NOT_SUPPORTED:

 print ("Invalid peripheral")

 else:

 print ("Unexpected error code: ", error)

Assuming that the Raspberry is not this computer and connected as 10.0.0.2

Also, dv0_manager is called like "dv0_manager -ip_address 10.0.0.2 -login pi"

res = dv0.Open('10.0.0.2', 6900, 'pi', 'raspberry')

Assuming that the Raspberry is this computer

and dv0_manager is called just like "dv0_manager"

res = dv0.Open('',0,'','');

looping = True

if (res == 0):

 print ("Connected to dv0_manager")

else:

 DisplayError(res)

 looping = False

while looping:

 print ("1-SetIndividualOutput 2-SetGroupOutput 3-SetPWMOutput")

 print ("4-SetPWMLimits 5-GetIndividualInput 6-GetGroupInput")

 print ("7-GetAnalogInput 8-GetPulseCounting 9-GetFrequency")

 print ("10-Get Manifest 0-Exit")

 option = int(input("Enter option:"))

 if option == 1:

 # --- Individual output example

 board = int(input ("Enter board address:"))

 group = int(input ("Enter group :"))

 output= int(input ("Enter output:"))

 value = int(input ("Enter value (1/0):"))

 res = dv0.SetIndividualOutput(board, group, output, value)

 DisplayError(res)

 elif option == 2:

 # --- Group output example

 board = int(input ("Enter board address:"))

 group = int(input ("Enter group :"))

 value = int(input ("Enter value :"))

 res = dv0.SetGroupOutput(board, group, value)

 DisplayError(res)

 elif option == 3:

 # --- Set PWM value example

 board = int(input ("Enter board address:"))

DVO IO_A

DVO IO_A ©2015 deValirian

 output= int(input ("Enter output:"))

 value = int(input ("Enter value (0 to 10000) :"))

 res = dv0.SetPWMValue(board, output, value)

 DisplayError(res)

 elif option == 4:

 # --- Set PWM limits example

 board = int(input ("Enter board address:"))

 output= int(input ("Enter output:"))

 period= int(input ("Enter period(us):"))

 timeForZero= int(input ("Enter time for zero(us):"))

 timeFor100 = int(input ("Enter time for 100%(us):"))

 res = dv0.SetPWMLimits(board, output, period, timeForZero, timeFor100)

 DisplayError(res)

 elif option == 5:

 # --- Get Individual Input example

 board = int(input ("Enter board address:"))

 group = int(input ("Enter group :"))

 Input = int(input ("Enter input:"))

 value, res = dv0.GetIndividualInput(board, group, Input)

 if (res == dv0.DV0_OK):

 print ("Value: ", value)

 else:

 DisplayError(res)

 elif option == 6:

 # --- Get Group Input example

 board = int(input ("Enter board address:"))

 group = int(input ("Enter group :"))

 value, res = dv0.GetGroupInput(board, group)

 if (res == dv0.DV0_OK):

 print ("Value: %x " % value)

 else:

 DisplayError(res)

 elif option == 7:

 # --- Get Analog Input example

 board = int(input ("Enter board address:"))

 Input = int(input ("Enter input :"))

 value, res = dv0.GetAnalogValue(board, Input)

 if (res == dv0.DV0_OK):

 print ("Value: %3.3f V" % (value/1000))

 else:

 DisplayError(res)

 elif option == 8:

 # --- Get Pulse Counting example

 board = int(input ("Enter board address:"))

 Input = int(input ("Enter input :"))

 value, res = dv0.GetPulseCounting(board, Input)

 if (res == dv0.DV0_OK):

 print ("Value: ", value)

 else:

 DisplayError(res)

 elif option == 9:

 # --- GetFrequency example

 board = int(input ("Enter board address:"))

 Input = int(input ("Enter input :"))

 value, res = dv0.GetFrequency(board, Input)

 if (res == dv0.DV0_OK):

 print ("Value: ", value)

DVO IO_A

DVO IO_A ©2015 deValirian

 else:

 DisplayError(res)

 elif option == 10:

 # --- Get Manifest example

 board = int(input ("Enter board address:"))

 description, res = dv0.GetBoardManifest(board);

 if (res == dv0.DV0_OK):

 print (description)

 else:

 DisplayError(res)

 elif option == 0:

 looping = False

DVO IO_A

DVO IO_A ©2015 deValirian

5. MECHANICAL DRAWINGS

Hole dimensions (top view)

Board dimensions (left view)

Connector dimensions (front view)

Board dimensions and hole positions (top view)

Board dimensions (front view)

DVO IO_A

DVO IO_A ©2015 deValirian

6. ACCESSORIES

The IO_Al board comes with the following accessories:

 One DV0 socket. Model 20020008-D041B01LF

Also, a DIN RAIL adapter is available at www.devalirian.com

http://www.devalirian.com/

DVO IO_A

DVO IO_A ©2015 deValirian

IMPORTANT NOTICE

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be

superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

deValirian MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR

ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION,

QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.

deValirian disclaims all liability arising from this information and its use. Use of deValirian devices in life support and/or safety

applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless deValirian from any and all

damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any deValirian

intellectual property rights.

Header1 board is not designed to be radiation tolerant

Please be sure to implement in your equipment using the safety measures to guard against the possibility of physical injury, file or any

other damaged cause in event of the failure of IO_A board. deValirian shall bear no responsibility whatsoever for you’re your use of

IO_A board outside the prescribed scope or not in accordance with this manual.

Reproduction of significant portions of deValirian information in deValirian data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. deValirian is

not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Web Site: www.devalirian.com

Mail info: info@devalirian.com

http://www.devalirian.com/
mailto:info@devalirian.com

	1. Functional overwiew
	1.1 Address selection
	1.2 DV0 Bus connection
	1.3 Manifest

	2. Electrical characteristics
	2.1 Absolute maximum ratings
	2.2 Opto-coupled inputs
	2.2.1 Operating conditions
	2.2.2 Enumeration
	2.2.3 API functions

	2.3 Analog inputs
	2.3.1 Operating conditions
	2.3.2 Enumeration
	2.3.3 API functions

	2.4 Relay outputs
	2.4.1 Operating conditions
	2.4.2 Enumeration
	2.4.3 API functions

	2.5 Transistor outputs
	2.5.1 Operating conditions
	2.5.2 API functions

	3. Application notes
	3.1 Managing DC motors
	3.2 Managing a servomotor for RC
	3.3 Connecting NPN or PNP industrial sensors
	3.4 Connecting analog sensors
	3.5 Measuring temperature with TMP36/37
	3.6 Controlling motorized blinds

	4. Software
	4.1 DV0 API functions related to IO_A
	4.1.1 Creating an instance of DV0 class
	4.1.2 Connecting to dv0_manager
	4.1.3 Summary of API functions related to IO_A
	4.1.4 API examples

	5. Mechanical drawings
	6. Accessories
	Important notice

