
Header1 © 2015 deValirian

deValirian DV0 HEADER1

Battery shield for Raspberry Pi and DV0 expansion

boards controller

Features
 Power supply for Raspberry Pi A and B models

 Wide input voltage for battery or wall adapter

 Safe shutdown for Linux operating system

 Battery voltage monitoring

 Real time clock keeping

 Programmable wake up scheduling

 Programmable hardware restart

 Programmable shutdown and boot time

 Watch dog reset function

 On/Off Push button for manual or remote power

up/down sequences

 DV0 bus connector for expansion boards

 Free available Linux commands and API library

(Python, C++ or Java) for setting parameters and

accessing expansion boards

 Shape designed for easy access to Raspberry Pi

GPIO, DSI and CSI Camera connectors

 Spacers and screws for mechanical assembly are

included

Technical specifications
 Power to Raspberry Pi: 5V, 0.8A

 Power to DV0 expansion bus: 5V, 1A

 Both 5V outputs are short circuit protected

 Input voltage for battery or wall adapter: from 6.5V

up to 27V

 Both wall adapter and battery connector protected

against wrong polarity connection

 Battery chemistry: NiMH or Lead-Acid

 Battery slow charge internal resistor

 Connector for increasing battery charge current

 Power consumption during sleep (all 5V power

supplies off): 3.5mA

 Programmable voltage failure threshold

 Selectable mode wall or mode battery standalone

 Real time clock accuracy:0.01%

 Up to 16 expansion boards management capability

 Command latency from user application to IO

expansion boards: 15ms

Fig. 1 Simplified block diagram

IO expansion

boards

On/Off

Battery input

Wall input

External Battery
charge resistor

5V

5V

Power

control

unit

DV0 expansion bus

LINUX
dv0_manager

Python/Java/C++ API

Usr App Usr App

Shutdown

Set date

dv0_test

HEADER1 Raspberry Pi © A/B Model

DVO HEADER1

Header1-Page 2 ©2015 deValirian

Table of contents

1. Functional overwiew ... 5

1.1 Uninterruptible power supply. .. 5

1.1.1 Wall Mode vs. Battery Mode .. 5

1.1.2 Power Off Conditions ... 5

1.1.3 Power Off Process .. 6

1.1.4 Power On Conditions .. 6

1.1.5 Power On Process ... 6

1.1.6 On State features .. 6

1.1.7 Real time clock .. 6

1.2 Managing DVO IO expansion boards ... 7

1.2.1 Discovery process ... 7

2. Electrical characteristics .. 8

2.1 Identifying connectors ... 8

2.1.1 Wall input ... 8

2.1.2 Battery charge resistor ... 8

2.1.3 Battery input ... 8

2.1.4 On/Off Pushbutton ... 8

2.1.5 DV0 Bus connector ... 9

2.2 Absolute maximum ratings .. 10

2.3 Power Consumption .. 10

2.3.1 Wall input consumption ... 10

2.3.2 Battery input consumption ... 10

2.3.3 Power calculation examples ... 11

2.4 DVO Bus length .. 13

2.4.1 Data transmission degrading .. 13

2.4.2 Voltage drop ... 13

3. Battery dimensioning .. 15

3.1 Battery considerations .. 15

3.1.1 Battery chemistry ... 15

3.1.2 Battery capacity .. 16

3.1.3 Internal resistance .. 16

3.2 Wall Mode ... 16

3.2.1 Battery capacity calculation procedure .. 16

DVO HEADER1

Header1-Page 3 ©2015 deValirian

3.2.2 Battery charge calculation procedure .. 17

3.3 Battery mode ... 17

3.3.1 Battery capacity calculation procedure .. 18

3.3.2 Battery charge calculation procedure .. 18

3.4 Battery dimensioning examples .. 18

3.4.1 Wall mode calculations example .. 18

3.4.2 Battery mode calculations examples. ... 19

4. Software .. 22

4.1 Architecture description .. 22

4.2 dv0_manager installation .. 23

4.2.1 dv0_manager return values ... 23

4.2.2 Unblocking ttyAMA0... 23

4.3 dv0_manager command line parameters ... 24

4.3.1 Parameter -serial_port <port> ... 24

4.3.2 Parameter -port <port number> .. 24

4.3.3 Parameter -ip_address <ip_address> ... 24

4.3.4 Parameter -login <login name> .. 24

4.3.5 Parameter -shutdown_command “<command>” .. 24

4.3.6 Parameter -shutdown_time <seconds> .. 24

4.3.7 Parameter -boot_time <seconds> .. 24

4.3.8 Parameter -restart_time <minutes> ... 25

4.3.9 Parameter -min_voltage <voltage> .. 25

4.3.10 Parameter -cut_vbus .. 25

4.3.11 Parameter -no_push_active ... 25

4.3.12 Parameter -force_date ... 25

4.3.13 Parameter -start_up_time dd:hh:mm .. 25

4.3.14 Parameter -watch_dog <seconds> ... 25

4.4 dv0_test command line parameters ... 26

4.4.1 Parameter -ip_address <ip address> .. 26

4.4.2 Parameter -port <Port number> ... 26

4.4.3 Parameter -login <login name> .. 26

4.4.4 Parameter -password <password> ... 26

4.4.5 Parameter -set_date ... 26

4.4.6 Parameter -set_restart_time <minutes> .. 26

4.4.7 Parameter -power_off .. 26

4.4.8 Parameter -get_manifest <address> .. 26

4.4.9 Parameter -watch_dog_reset ... 27

DVO HEADER1

Header1-Page 4 ©2015 deValirian

4.4.10 Return values of dv0_test ... 27

4.5 Examples of dv0_manager, dv0_test and Linux scripts .. 28

4.6 DV0 API .. 30

4.6.1 Creating an instance of DV0 class ... 30

4.6.2 Connecting to dv0_manager .. 31

4.6.3 API functions related to Header1 ... 32

4.6.4 API examples .. 35

5. Mechanical drawings ... 39

6. Accessories .. 40

Important notice.. 41

Revision history

V1.0 Jan-2015

DVO HEADER1

Header1-Page 5 ©2015 deValirian

1. FUNCTIONAL OVERWIEW

The DeValirian Header1 is a dual source power

supply for Raspberry Pi providing two functions:

 Uninterruptible power supply with controlled Linux

shutdown and programmable restart features

 Managing DVO Input/Output expansion boards

1.1 Uninterruptible power supply.

As an uninterruptible power supply, the Header1

generates stabilized 5V to the Raspberry Pi from the

Wall input or the Battery input, whichever is greater.

The Header1 control unit communicates to a program

running in the Raspberry Pi Linux (dv0_manager)

which is responsible for issuing a shutdown command

when the Wall input voltage falls below the Battery

input voltage or when the Battery input voltage falls

below a programmable threshold. Thus, file system

corruption due to sudden power outage can be

avoided.

The Header1 control unit communicates with the free

dv0_manager program running in the Raspberry Pi

Linux using the serial channel ttyAMA0. This channel

can be found in the Raspberry expansion connector.

See Section 4.0 for more information about

dv0_manager installation and features.

1.1.1 Wall Mode vs. Battery Mode

The Header1 can react in two ways when the power

in the Wall input disappears, depending on the state

of the jumper JP1. See Fig. 2 to locate this jumper.

When this jumper is closed (Wall Mode), the Header1

control unit issues a shutdown command to the

Raspberry Pi board whenever the voltage on the Wall

Input is lower than the voltage in the Battery Input for

more than five seconds. In this mode, the battery size

is dimensioned for powering the Raspberry Pi just

during the shutdown time (20 to 30 seconds).

The Wall Mode is intended for applications where the

main power source comes from a wall adapter supply

and a battery is needed only for safe shutdown

purposes or sleeping features as time keeping,

scheduled restart, on/off pushbutton, etc.

When JP1 is left open (Battery Mode), the shutdown

command is issued only when the Battery input

voltage falls below min_voltage for more than five

seconds, no matters what voltage is at Wall input. The

default voltage level for min_voltage is 6V, but other

values can be set programmatically to accommodate

a wide range of battery voltages.

The Battery Mode is intended for applications where

the main power source is a battery, and Wall Input is

used just for slow battery charging or for feeding the

board when the battery needs to be temporally

disconnected.

The 5V power to Raspberry Pi is always obtained

from the input source that exhibits the upper voltage

value and automatic balance is made when one

source falls below the other one without affecting the

stability of Raspberry Pi power supply.

Every time the Header1 control unit sends a shutdown

command, it starts a timer and when it reaches

shutdown_time, the 5V power to Raspberry Pi and

DV0 Bus© as well are disconnected. During this time,

no power decisions are taken. Also, when start

conditions are reached, another timer is launched and

no power decisions are taken until this timer reaches

boot_time. This ensures that safe halt and safe boot

process can be done by the Linux, independently of

power fluctuations. Both shutdown_time and

boot_time parameters can be set programmatically,

as described in Section 4.

1.1.2 Power Off Conditions

Conditions that trigger a Power Off Process when the

Header1 is at the On State are:

 V(Wall input) < 6 for more than 5 seconds when

Wall Mode is selected

 V(Battery input) < min_voltage for more than 5

seconds when Battery Mode is selected

 Push button is pressed for more than 4 seconds

(unless that -no_push_active parameter is set)

 A SIGPWR is sent to dv0_manager

 The PowerOff() API function is called by an

application connected to dv0_manager

 Watch dog reset timeout: when parameter -

watch_dog <watch_dog_time> has been set and

no watch dog reset has been issued for

watch_dog_time second (see Section 4 for more

information)

Fig. 2 JP1 Wall/Battery mode jumper selector

DVO HEADER1

Header1-Page 6 ©2015 deValirian

1.1.3 Power Off Process

The Power Off Process starts when one of the Power

Off Conditions becomes true. The sequence of steps

of this process is:

 Issue a shutdown command to dv0_manager,

witch calls the Linux command “shutdown –h now”

 Cut off the voltage in the DV0 Bus if parameter -

cut_vbus is set

 Wait for shutdown_time seconds

 Cut off the voltage of Raspberry Pi and DV0 Bus

 Go to Sleep State

1.1.4 Power On Conditions

Conditions that trigger a Power On Process when the

Header1 is at the Sleep State are:

 V(Wall input) > 6.2V for more than 5 seconds

when Wall Mode is selected

 V(Battery input) > min_voltage+0.2 for more than

5 seconds when Battery Mode is selected

 Push button is pressed for more than 2 seconds

(unless that -no_push_active parameter is set)

 Restart timer timeout: when -restart_time

<time_to_restart> has ben set and time_to_restart

minutes have been passed until the last arriving to

Sleep State

 Scheduled start: parameter star_up_time

matches the current date and time kept by

Header1 (see Section 4)

1.1.5 Power On Process

The Power Off Process starts when one of the Power

On Conditions becomes true. The sequence of steps

of this process is:

 Rise Raspeberry Pi voltage and DV0 bus voltage

to 5V

 Wait boot_time seconds

 Send the kept date and time to dv0_manager if

parameter -force_date has been set, which sets

system time

 Executes the Discovery Process

 Go to On State

1.1.6 On State features

When the Header1 is in the On State, it accepts the

following commands:

 Set current date and time

 Set restart time (restart_time)

 Set scheduled start (start_up_time)

 Reset watch dog timer if enabled

 Route commands to/from DVO bus expansion

boards

The Figure 3 shows the Header1 states and their

transitions.

1.1.7 Real time clock

The Header1 board keeps the date and time during

both On and Sleep states. It starts at 1/1/2001

00:00:00 on the First Wake Up and can be set to any

value by using the free program dv0_test or by calling

the API function SetDate()

The accuracy of the Header1 real time clock is 0.01%,

which is not a good long term accuracy because it

means that the time error over 24 hours can be up to

1 minute and 20 seconds (it depends on ambient

temperature).

However, this accuracy is good enough to starts the

board at scheduled time and to give an initial date to

the Raspberry Pi. With this initial date, the Linux OS

can take decisions and, with relaxed periodicity, get

access to Internet looking for a NTP server and to

synchronize itself and the Header1 board.

Fig. 3 Header1 states and transitions

First wake

up

Sleep

State

Power On

Process

Power Off

Process

On

State

Power On

Condition

Power Off

Condition

All power

sources off

DVO HEADER1

Header1-Page 7 ©2015 deValirian

1.2 Managing DVO IO expansion boards

DVO IO Expansion boards allow Linux based systems

to gain access of the real word by giving easy control

of physical inputs and outputs, like analog or digital

sensors, relays, stepper motors, servo motors,

keyboard, displays, etc

These boards need a 5V power supply and a RS422

twisted pair serial channel connected in parallel bus

mode. Thanks to the address selector micro-switch

located at each IO board, the header can send data

and poll information from every board connected to

the bus.

After the First Wake Up state, the Header1 control

unit executes the initial discovering process by

individually polling to all possible address. It takes

roughly one second and, once it is finished, the

Header1 board knows how many boards are

connected and what their address are.

User programs can read/write data from/to boards

thanks to dv0_manager program which acts as a

tunnel between user programs and IO boards. A

complete and easy to use library is free available for

C/C++, Java and Python. See Section 4 for more

information and examples.

So, user programs connect to dvo_manager, which

talks with the Header1 control unit, the actual

responsible for send and receive data through the

serial channel. During idle states, that is, when user

programs don’t invoke any library function, the

Header1 control unit continuously polls to all known

board to get the value of their inputs and maintains a

local database with these values. Thanks to this

database, user programs functions that want to read

board’s input values exhibit no extra delay

independently of how many boards are connected.

Also, user program functions that want to write to a

specific board are considered as a high priority

procedure by the Heade1 control unit, and it only wait

the current poll operation to launch the command to

the specified board. This strategy ensures a

maximum latency of 15 ms both for read and write

operations from user programs.

1.2.1 Discovery process

The broad discovery process, that is, a sequential

enquiry to all possible 63 address, is made whenever:

 The First Wake up occurs

 Every time that the Header1 goes to On State

from Idle State

An individual discovery process, that is, an enquire to

a unique and specific address, is made whenever a

user program wants to access to a board that is not

present in the Header1 control unit database. In order

to maintain the latency time declared above, the

control unit returns an error as “Board not present” to

the user program function, but simultaneously sends

a poll to this board. If this board is really connected,

the next user program function to this board will be

successful.

This allows a “hot connection” feature for the DV0 Bus

but the user program procedure has to check every

function return value and in case of “Board not

present” error, retry the function call instead of

treating this error as an exception.

DVO IO Board 1

DVO IO Board 2

DVO IO Board 16

Address Address Address

DVO IO Board 1

Fig. 4 DVO IO expansion board bus

…up to 16 boards…

Serial channel
twisted pair

5Volts/1A

0V

DVO HEADER1

Header1-Page 8 ©2015 deValirian

2. ELECTRICAL CHARACTERISTICS

This section explains the electrical characteristics of

each Header1 connector and the length issues related

to the DV0 bus cabling.

2.1 Identifying connectors

The Figure 5 shows the location of all connectors of

Header1 board

2.1.1 Wall input

Main Input power for generating Raspberry Pi 5V,

DV0 Bus 5V and battery charge. Connect the positive

wire to the screw marked as “+” and the negative wire

to the screw marked as “-“.

Maximum Voltage…………………………………..27V

Minimum Voltage…………………………………..6.5V

Reverse polarity protection………………………….Yes

Solid/Stranded wire…………….…AWG 16 to AWG 24

Wire cross section ………………….1.5mm to 0.2mm

See 2.3 Power Consumption for input current

calculation.

2.1.2 Battery charge resistor

This connector is intended for increase the battery

charge current by connecting an external resistor. See

3.4 Battery dimensioning and charging.

2.1.3 Battery input

Secondary input power for generating Raspberry Pi

5V, DV0 Bus 5V and battery charge. Connect the

positive wire to the screw marked as “+” and the

negative wire to the screw marked as “-“.

Maximum Voltage…………………………………..27V

Minimum Voltage……………………………………6V

Reverse polarity protection………………………..Yes

Solid/Stranded wire…………..…AWG 16 to AWG 24

Wire cross section ………………….1.5mm to 0.2mm

See 2.3 Power Consumption for input current

calculation.

2.1.4 On/Off Pushbutton

A momentary pushbutton connected to this input

allows to rise the 5V power for the Raspberry Pi and

the DV0 Bus connecter if it is pressed for more than 2

seconds. Also, a Power Off Process should be

initiated if the button is pressed for more than 4

seconds.

The operation of this input is disabled if the

dv0_manager program is called with the command

line parameter –no_push_active.

This input has an internal 10K pull up resistor

connected to the 3.3 V Header1 rail. If a device other

than a pushbutton is connected to this input, keep in

mind that the Header1 control unit requires a voltage

below 660mV, so a minimum of 300μA sink current

needs to be assured. The screw aligned with the text

“OFF” is connected to the common ground: Wall and

Battery “-“ inputs and 0V of DV0 Bus.

No high voltage transients protection are placed so it

is not recommended to assert a large cable between

this input and the pushbutton if this cable can be

placed in parallel with noisy or high voltage power

lines.

Wall Input

Battery charge

resistor

Battery Input

Raspberry Pi

Connectors top

& bottom

On/Off

Pushbutton

DVO BUS

Fig. 5 Header1 connectors

DVO HEADER1

Header1-Page 9 ©2015 deValirian

2.1.5 DV0 Bus connector

This receptacle connector contains power and data

for IO expansion board. An extracting socket with

screws is supplied with the Header1 board to facilitate

the installation of IO expansion board bus cabling

(AWG 16..24, cross section 1.5 to 0.2 mm)

Technical data:

 Socket reference: 20020004-D041B01LF from

FCI.

 Solid/Stranded wire: AWG 16 to AWG 26

 Wire cross section: 1.5mm to 0.2mm

 Data signal A and B ESD, EFT and Surge

protection: IEC 61000-4-2 (ESD), IEC 61000-4-4

(EFT) and IEC 61000-4-5 (Surge)

 5V output maximum current: 1A

 5V output short-circuit current: 2A

Connect differential pair A to all A inputs of connected

IO boards, and pair B to all B inputs as well. Also,

connect the common data pin (0V) to all IO boards.

The output marked as 5V is the DV0 bus voltage

output. It is raised to 5V during the Power On

Process and disconnected during the Power Off

Process (see 1.1.5 and 1.1.3). This output can be

used to fed the IO boards connected to the bus, but it

is not mandatory since IO boards can be locally

supplied, as explained at 2.4.2 Voltage drop.

All IO Boards PCB are marked with the legend shown

at Figure 7.

5V

0V

B

A

DV0 Bus voltage

power supply Differential pair wire B

Differential pair wire A

Common for data and

power

Fig. 7 DVO Bus connector pin out

DVO HEADER1

Header1-Page 10 ©2015 deValirian

2.2 Absolute maximum ratings

Absolute maximum ratings for the Header1 board are

listed below. Exposure to these maximum rating

conditions for extended periods may affect device

reliability. Functional operation of the device at these,

or any other conditions above the parameters

indicated in the operation listings of this specification,

is not assured.

Operating Ambient temperature………....0°C to +70°C

Storage temperature-55°C to +125°C

Voltage on Wall Input............................-28V to +28.0V

Voltage on Battery Input.......................-28V to +28.0V

Voltage on Pushbutton connector..........-0.3V to +3.3V

Maximum Current out to Raspberry Pi©………...….1A

Maximum Current out to DV0 Bus……………..….1.2A

Stresses above those listed under “Absolute

Maximum Ratings” may cause permanent damage to

the device. This is a stress rating only and functional

operation of the device at those or any other

conditions above those indicated in the operation

listings of this specification is not implied. Exposure to

maximum rating conditions for extended periods may

affect device reliability.

2.3 Power Consumption

Either in Wall Mode or Battery Mode, the power flows

from the Wall input or the Battery input depending

only on what input has the higher level of voltage.

Because of a diode connection, when the higher input

falls below the lower, the Header1 softly balances the

path of power so that the output to the Raspberry Pi,

the DVO Bus and the internal power doesn’t note the

change.

Figure 7 shows a simplified diagram of power path.

The power consumption is the product of voltage and

current so, given a nominal voltage for wall or battery

input as a design decision, the input current has to be

calculated for dimensioning the wall input adapter and

the capacity of the battery.

2.3.1 Wall input consumption

To do that, lets begin with the total power equation of

Wall input:

Pwall = Prasp+PDV0+Pcontrol+Pdiode+Pcharge

Prasp is the power delivered to the Raspberry Pi plus

the amount of losses due to the inefficiency of the

step down voltage regulators. As its efficiency is,

roughly, 80 per cert, Prasp can be expressed as

Prasp = 5 x IRasp / 0.8

The same reasoning applies for PDV0

PDVO = 5 x IDVO / 0.8

Pcontrol is the power that needs the Header1 control

unit to operate and is quite different whether this

control unit is in the sleep state or in the off state.

During on state, the current consumption is 25mA

while in the sleep state this current falls to 3.5mA. The

control unit voltage regulator is a linear regulator so

the current delivered is constant, which yields a power

consumption of

Pcontrol = Vwall x Icontrol

Pdiode is the loss of power due to the balancing diodes

and can be computed as the sum of the input current

to VRasp and VDVO step down regulators and the

control current, all multiplied by 0.4 as the diode

nominal voltage drop.

Pdiode = 0.4(Prasp/Vwall + PDV0/Vwall + Icontrol)

Finally, Pcharge depends on the difference of voltage

between Wall input and Battery input and the charging

resistor. Assuming a diode voltage drop of 0.2V, this

power can be computed as:

Pcharge = Vwall (Vwall - Vbat - 0.2)/Rchrg

The charge resistor depends on the capacity of the

battery and the time required to obtain a full charge

condition. If no external resistor is applied, the charge

resistor value is 470Ω

2.3.2 Battery input consumption

The power equation of Battery input is only slightly

different of the Wall input in the sense of that no

power charging is involved:

Pbattery = Prasp+PDV0+Pcontrol+Pdiode

And the expressions for Pcontrol and Pdiode are:

Wall input

Vwall, Iwall

Battery

input

Vbat, Ibat

Step down 80%

efficiency

Step down 80%

efficiency

5V Raspberry
IRasp

IDV0

IControl Header1 control

unit

R
C

h
rg

I c
h
rg

Fig. 7 Power path

5V DVO

5V DV0

DVO HEADER1

Header1-Page 11 ©2015 deValirian

Pcontrol = Vbat x Icontrol

Pdiode = 0.4(Prasp/Vbat + PDV0/Vbat + Icontrol)

Note that the power needed to feed the Header1
control unit is proportional to the battery voltage so, in
terms of battery duration, the lower the battery
voltage, the better the battery performance.

2.3.3 Power calculation examples

In the formula expressed above, there are parameters
that are design decisions, as Wall input voltage and
Battery input voltage, some constants like Icontrol or
Rchrg and some parameters that can be estimate like
IRasp and IDVO.

The target is to obtain Iwall and Ibat to calculate the

power of the Wall adapter and the capacity of the

battery.

The value of constants parameters are:

Icontrol(On state)…………..……………………….0.025A

Icontrol (Off state)….……..……………………....0.0035A

Rchrg (no external resistor)…………………………470Ω

As for estimated parameters, IDVO is obtained as the

sum of all boards current, easily available in the data

sheet of every board. On the other hand, IRasp is quite

difficult to estimate because it is function of how many

USB gadgets are connected, Ethernet traffic (if exists)

camera consumption, Linux distro, etc.

However, it is possible to estimate the average

current consumption of IRasp assuming the following

data (source, official Raspberry site):

Raspberry Pi© A nominal consumption………....0.5A

Raspberry Pi© B nominal consumption………....0.7A

Camera consumption………………………..…….0.2A

And for each gadget connected to USB, try to find out

their power consumption (in Watts) and divide it by 5

to obtain the current consumption (in Amperes) and

add it to the value of IRasp

Note that all values have to be expressed in Volts,

Amperes and Watts to avoid magnitude

Following examples will be used for power calculation

and for battery

Example 1.

Set Wall input to 15V, Battery input to 12V, no

external charge resistors, Raspberry Pi A model with

no camera and two IO_A boards connected to the

bus.

Lets begin with the on state power consumption. From

the data described above, calculate PRasp:

Prasp = 5 x 0.5 / 0.8 = 3.12 [W]

From IO_A datasheet, find out the maximum current

consumption (0.134A) and calculate PDVO

PDVO = 5 x (0.134 + 0.134) / 0.8 = 1.675 [W]

Continue with the control unit power, using the greater

voltage among Wall or Battery input. In normal

operation conditions, voltage at Wall input is greater

than Battery input. Only in the absence of Wall power

will be the Battery input get the greater value.

Pcontrol = Vwall x Icontrol = 15 x 0.025 = 0.375 [W]

Then, compute Pdiode

Pdiode = 0.4(Prasp/Vwall + PDV0/Vwall + Icontrol) =

0.4(3.12/15+1.675/15+0.025) = 0.138 [W]

Follow with Pcharge:

Pcharge = Vwall (Vwall - Vbat - 0.2)/Rchrg =

= 15(15-12-0.2)/470 = 0.006 [W]

And finally, add altogether to carry out the total power

Pwall = Prasp+PDV0+Pcontrol+Pdiode+Pcharge = 3.12 + 1.675

+ 0.375 + 0.138 + 0.006 = 5.31 [W]

With this information it is possible to find a suitable

wall adapter but sometimes, adapters are rated by

their output current instead of their output power. In

this case, simply divide the calculated power by the

nominal voltage:

Iwall = Pwall / Vwall = 5.31/15 = 0.354 [A]

As for the battery, it is important to know the power

consumption during both the on state and the off

state.

During the on state, battery power is

Pbattery(ON) = Prasp+PDV0+Pcontrol+Pdiode

where

Pcontrol(ON) = Vbat x Icontrol(ON) = 12 x 0.025 = 0.3 [W]

Pdiode(ON) = 0.4(Prasp/Vbat + PDV0/Vbat + Icontrol(ON)) =

0.4(3.12/12+1.675/12+0.025) =0.170 [W]

then,

Pbattery(ON) = Prasp+PDV0+Pcontrol(ON)+Pdiode(ON) =

= 3.12 + 1.675 + 0.3 + 0.17 = 5.26 [W]

DVO HEADER1

Header1-Page 12 ©2015 deValirian

and dividing by Vbat to obtain Ibat current yields

Ibat(ON) = Pbattery(ON)/12 = 0.439 [A]

During the off state, battery power is

Pbattery(OFF) = Pcontrol(OFF)+Pdiode(OFF)

because no energy is supply to the board or the bus.

The power loss on the diode is

Pdiode(OFF) = 0.4 x Icontrol(OFF) = 0.4 x 0.0035 = 0.0014

[W]

and power control is reduced to

Pcontrol(OFF) = Vbat x Icontrol(OFF) = 12 x 0.0035 = 0.042 [W]

Total power is

Pbattery(OFF) = Pcontrol(OFF)+Pdiode(OFF) = 0.042 + 0.0014 =

0.043 [W]

Dividing by Vbat to obtain Ibat current:

Ibat(OFF) = Pbattery(OFF)/12 = 0.0036 [A]

Dealing with batteries, it is usual to manage nominal

voltage and discharge current as a design parameters

to compute the battery size and estimations on battery

duration and charging time as well. Both IBat(OFF) and

Ibat(ON) will be used at 3. Battery dimensioning.

Example 2.

Set Wall input to 12V, Battery input to 7.2V, no

external charge resistors, Raspberry Pi B model with

camera, a WiFi dongle which has a rated power of

200mW, and four IO_A boards connected to the bus.

The current drown by the Raspberry Pi in this case is

Irasp = 0.7 + 0.2 + 0.2/5 = 0.940 [A]

and the power

Prasp = 5 x 0.940 / 0.8 = 5.87 [W]

Using the same sources of information that on the

example 1, it is easy to find

PDVO = 5 x (4 x 0.134)) / 0.8 = 3.35 [W]

Pcontrol = Vwall x Icontrol = 12 x 0.025 = 0.3 [W]

Pdiode = 0.4(Prasp/Vwall + PDV0/Vwall + Icontrol) =

0.4(5.87/12+3.35/12+0.025) = 0.317 [W]

Pcharge = Vwall (Vwall - Vbat - 0.2)/Rchrg =

= 12(12-7.2-0.2)/470 = 0.006 [W]

And finally

Pwall = Prasp+PDV0+Pcontrol+Pdiode+Pcharge = 5.87 + 3.35

+0.3 + 0.317 + 0.006 = 9.84 [W]

Iwall = Pwall / Vwall = 9.84/12 = 0.820 [A]

As for the battery, during the on state, the

intermediate values are

Pcontrol(ON) = Vbat x Icontrol(ON) = 7.2 x 0.025 = 0.180 [W]

Pdiode(ON) = 0.4(Prasp/Vbat + PDV0/Vbat + Icontrol(ON)) =

0.4(5.87/7.2+3.35/7.2+0.025) =0.522 [W]

then,

Pbattery(ON) = Prasp+PDV0+Pcontrol(ON)+Pdiode(ON) =

= 5.87+ 3.35 + 0.18 +0.522 = 9.92 [W]

and dividing by Vbat to obtain Ibat current yields

Ibat(ON) = Pbattery(ON)/7.2 = 1.38 [A]

During the off state, the intermediate values are

Pdiode(OFF) = 0.4 x Icontrol(OFF) = 0.4 x 0.0035 = 0.0014

[W]

Pcontrol(OFF) = Vbat x Icontrol(OFF) = 7.2 x 0.0035 = 0.025

[W]

then

Pbattery(OFF) = Pcontrol(OFF)+Pdiode(OFF) = 0.025 + 0.0014 =

0.026 [W]

Dividing by Vbat to obtain Ibat current:

Ibat(OFF) = Pbattery(OFF)/7.2 = 0.0036 [A]

Note that although the Ibat(OFF) of example 1 and

example 2 are similar, the power of example 2 is

reduced proportionally to the reduction of battery

nominal voltage. So, to maximize the duration of the

battery during off state, it is better to choice a low

voltage battery.

DVO HEADER1

Header1-Page 13 ©2015 deValirian

2.4 DVO Bus length

There are two different considerations about DV0 Bus

wire length. On one hand, there is the data

transmission degrading, on the other hand there is the

issue of the voltage drop due to the resistance of the

cable.

2.4.1 Data transmission degrading

Data is transmitted using a RS422 standard level of

differential voltage at 100kbps on the wires marked as

A and B at the DV0 Bus connector. This standard

doesn’t define a wire type to be used, in opposition to

other standards like Ethernet or similar. For this

reason there is not an official maximum cable length

for this standard.

However, there are a conservative data based on

empirical test that assures a 1000 meters length at

100 kbsp using a twisted pair of 15pf, 5ns/m of

propagation speed.

To achieve the maximum noise rejection that RS422

offers, it is mandatory to use a twisted pair. We

recommend a twisted pair of AWG 20 (0.5 mm
2
)

because test realized with this cable had shown no

degradation over 50 meters bus with 16 IO boards

connected (no termination resistors are required for

that distance)

Even with the CRC that protects all frames which

travel through the bus and despite the excellent

performance shown over 50 meters bus length, we

don’t recommend to exceed this limit due to the

ground common mode noise that could appear if the

power wires of bus are not strong enough or there is a

ground loop.

The common mode noise is generated by the power

current when it flows throughout the power wires. As

the power wires don’t have a zero impedance, a

common voltage appears (see Figure 8) and, if this

noise is greater than 7 volts, the receiver can’t decode

data so the current frame will be ignored. Also, all

strong electric or magnetic field close to the power

wires can induce a common mode voltage as well.

To reduce the common mode voltage noise, it is

strongly recommended:

 Twist the power wires as the data wires. This

reduces the inductive factor of impedance and the

magnetic fields disturbance.

 Avoid cabling power wires in parallel with other

power lines, specially if they carry strong inductive

loads, as motors or electro valves.

2.4.2 Voltage drop

The voltage drop across the power wires is due to the

DC impedance (i.e., the resistance) of these wires. It

is easy to calculate this voltage drop average value

knowing the section of the cable, its length and the

average current consumption of the IO board.

Knowing the section of the cable, manufacturers

report its resistivity (ρ) in ohms/meter. Then, to obtain

the voltage drop

Vdrop = Iavg x length x ρ

Using the example 2 explained above, with AWG 20

section and 25 meters length between the Header1

board and the IO board, the voltage drop will be

Vdrop = Iavg x length x ρ = 4 x 0.134 x 25 x 0.033 =

0.442 [V]

In the above expression, the figure 0.033 is the

nominal resistivity of AWG 20 wire (from

manufacturer). As all DVO IO boards can withstand

this voltage drop over 5V, this example is correct.

However, this voltage drop is near the limits so, if we

plan a larger bus length, a new approach is needed.

To solve this issue, there are two solutions available:

 Increase the wire section

 Feed IO board with local power supplies

Increasing the wire section is the simplest solution but

sometimes is not practical due to the cost increment

and the difficulty of cabling thick wires on the small

connectors of IO boards.

The use of local power supplies offers more flexibility

and solves the problem of connecting heavy loads (as

motors or servos) to the DV0 Bus power.

Figure 9 shows this 3-wires approach. When using

local powering, no high current flows through the

ground line but there is the risk of creating a ground

loop due to the difference of potential between the

earth reference of the local power supplies. However,

the common mode voltage generated in this case is

far lower than the one due to power supply current.

Vcm = Z x Ipwr

5V

0V

Ipwr

Fig. 8 Common mode noise

Z

DVO HEADER1

Header1-Page 14 ©2015 deValirian

Header1 and DV0 IO boards are protected
against high transient voltage according to IEC
61000-4-5 but it is not recommended to deploy a
large length of cable with different earths
references: lighting can generate a sudden high
energy transient that would destroy the
transceivers despite the surge protections.

This approach is intended just to avoid large
currents flowing through the power lines, not to
increase the distance between Header1 and IO
board. If you want to, do it at your risk, but at
least add a more powerful TVS protection and
assure a good earth connection at both power
supplies. Also, it is strongly recommended to
avoid placing data lines close to power lines.

CAUTION:

Z

5V

5V

Ve

Ie

Vcm = Ie x Z

Fig. 9 Local powering and ground loop

DVO HEADER1

Header1-Page 15 ©2015 deValirian

3. BATTERY DIMENSIONING

The Header1 board is intended for two battery

scenarios:

 Wall Mode: The system is powered by a wall

adapter and the battery is dimensioned only for

assuring a clean shutdown.

 Battery Mode: The system is mainly powered by

a wall adapter but in case of failure, the system

continues its operation powered by the battery

until the voltage battery drops below a save

preconfigured value witch allows a clean

shutdown

Obviously, the second scenario requires a much

powerful battery than the first one.

Following in this section, an explanation of how to

estimate the battery capacity will be given, along with

some discussions on the most suitable types of

batteries and their nominal voltage. Also, it is

important to calculate the optimum value for the

charging resistor. However, prior of battery

calculation, it is worth to comment some issues

related to battery chemistry and capacity.

3.1 Battery considerations

In this document, all references to “battery” stand for

“rechargeable battery”. For our purposes,

rechargeable batteries are defined by three

parameters:

 Chemistry: Can be Nickel based, Lead based or

Lithium based

 Capacity: Indicates the amount of energy that the

battery can store

 Internal resistance: The great the internal

resistance, the lower the current that can be

drown from the battery.

3.1.1 Battery chemistry

Lithium base batteries requires a smart charge

system. The Header1 board DOESN’T HAVE A

SMART CHARGE SYSTEM, so Lithium based

batteries are FORBIDEN to Header1.

Nickel based batteries are, nowadays, only Nickel-

Metal Hydride chemistry because the ancient Nickel

Cadmium technology has become prohibited. This

batteries are robust, easy to charge if the current is

not great, better ratio capacity/weight and

capacity/volume than lead batteries but much

expensive.

Lead battery are also robust and easy to charge,

cheaper than Nickel batteries, but they need much

volume and their weight is important.

As a rule of thumb, when in battery mode, if there is

no restriction about volume and weight, the better

decision is a lead battery. More exactly, we

recommend sealed lead acid because they are

maintenance-free and their price is very attractive.

However, during the last years, NiMH batteries have

decreased their price, close to the lead battery type,

so it could be interesting to choice a NiMH if the

weight-volume restrictions are important. Also, when

in wall mode, there is no need of powerful battery and

it is better to choice a little 9V, PP3, NiMH model, as

explained below at 3.2 Wall Mode example.

The most important parameter related to the

chemistry is the cell voltage at full charge, nominal

and end of charge. The voltage per cell of both

chemistries exhibits the same type of curve as they

are discharge.

Figure 10 shows the discharge curve. At full charge

the cell voltage is slightly higher than the nominal

value, but this level drops early as the battery

discharge begin. Then, there is a plateau at nominal

voltage that remains for the 90% of the discharge

cycle. Finally, close to the end of charge, there is an

abrupt drop of voltage. It is important that when the

battery reaches the end of voltage threshold, the

operating systems issues a shutdown immediately

because the time for a full voltage drop is

unpredictable. Also, its is recommended to be

conservative with this threshold.

Charge %

 100%

0%

Cell voltage

Full charge

Nominal
End of charge

Fig. 10 NiMH and Lead battery discharge curve

CAUTION:

 Some Lithium batteries have internal protection
against over and under voltage, but most
batteries don’t have any kind of such protection
so the risk of blowing or firing a Lithium based
battery is extremely high if it is connected to the
Header1 board

DVO HEADER1

Header1-Page 16 ©2015 deValirian

Table 1 shows the standard values for full charge,

nominal and end of charge values per cell and per

chemistry.

Commercial battery packs come with some standard

number of cells. Designers have to multiply the

number of cell by the End of Charge value to obtain

the min_voltage parameter. The dv0_manager

program continuously compares the battery voltage

against the min_voltage parameter and sends a

shutdown command when the battery voltage falls

below this value.

Table 1. Cell voltages

Chemistry Full charge Nominal End of charge

NiMH 1.8V 1.2V 0.9V

Lead Acid 2.1V 2V 1.95V

Caution: check these values with the manufacturer

data because there can be a significant tolerance

among models and types.

The default value for min_voltage is 6V, but can be

modified as a command line parameter when

launching dv0_manager.

Table 2 shows the recommended values of

min_voltage for the most common packs of

commercial batteries

Table 2. min_voltage recommended values

Chemistry Nominal
voltage

Number
of cells

min_voltage value

Lead Acid 6V 3 Not
recommended

Lead Acid 12V 6 11.9

Lead Acid 24V 12

NiMH 7.2V 6 6

NiMH 8.4V 7 7

NiMH 9.6V 8 8

NiMH 14.4V 12 12

NiMH 18V 15 15

 3.1.2 Battery capacity

In theory, battery capacity should express the

maximum amount of energy that the battery can store,

but in practice, it is expressed as Amperes-Hour (Ah),

which is a charge magnitude, not an energy

magnitude. Designers have to multiply the “capacity”

(Ah) by the nominal voltage battery pack (Volts) to

obtain Watts-Hour which it is an energy magnitude.

However, despite the formal considerations, it is quite

convenient to use the battery capacity in Ampere-

Hour to estimate the battery duration. For example, a

battery of 4800mAh, as a rule of thumb, can supply a

system that requires 4.8A during one hour, or a

system that requires 2.4A for two hours and so forth.

Also, the battery capacity is used as a relative

measure of charging or discharging current. For

example, if a battery of 4800mAh is discharged with a

current of 4.8 amperes, it is said that the discharge

current is 1C, if the current is 9.6A then the current is

2C, and for a 2.4A, the current is C/2. This value will

be used for charging current calculation below, at 3.4

Battery dimensioning examples.

3.1.3 Internal resistance

The internal resistance depends on the quality of the

battery and determines its application. The greater the

internal resistance, the greater the voltage drop for a

given current. Batteries designed to supply motors

have a very low resistance and allows discharge

current as big as 30C o more.

For the purposes of this application, the current

consumption involved is quite low so no issues at this

point are expected, except for the little 9V battery in

the example 3.4.1

3.2 Wall Mode

Note: Wall Mode operation is selected by leaving

connected the jumper 1, as shown in Figure 2.

The Wall Mode is intended for applications where the

main power source comes from a wall adapter supply

and a battery is needed only for safe shutdown

purposes or sleeping features as time keeping,

scheduled restart, on/off pushbutton, etc.

Shutdown condition: The Header1 control unit

issues a shutdown command to the Raspberry Pi

board whenever the voltage on the Wall Input is lower

than the voltage in the Battery Input for more than five

seconds. When the shutdown starts, the control unit

of the Header1 waits a determinate number of

seconds (shutdown_time) and cuts the power of the

Raspberry Pi and the DV0 bus. It is possible and

recommended to cut the power of the DV0 bus by

setting the parameter –cut_vbus as a command line

parameter of dv0_manager.

Energy needs: The battery must supply energy to the

Raspberry Board during the shutdown process and to

the Header1 control unit to keep the real time clock

running.

3.2.1 Battery capacity calculation procedure

To calculate the battery capacity, designers must

follows these steps:

 Determine Pbattery from 2.3.2. Set PDV0 zero if

parameter –cut_vbus is set

 Obtain Icontrol(Off) from 2.3.3

DVO HEADER1

Header1-Page 17 ©2015 deValirian

 Measure the actual shutdown time and set it as a

command line parameter of dv0_manager by

setting –shutdown_time nn where nn is the

number of seconds of shutdown time measured.

Default parameter is 30, but experiences proof

that the Raspbian distro needs only 15 seconds to

completely halt. Let’s call it Tsd (in seconds)

 Decide how many hours must the Header1 kept

the real time clock running before battery fails.

Let’s call it Trtc (in hours)

Then, for a given battery with nominal voltage Vn, the

capacity C (in Amperes x Hour) required is

Note: if the charge/discharge cycle is periodic, it is not

recommended to dimension the battery to the exact

value found above, since this means that a full

discharge state is achieve each cycle. Keep in mind

that batterie’s life is rated to rough 500 full discharge

cycles but this value increases dramatically as the

discharge level increases.

3.2.2 Battery charge calculation procedure

Because there is no temperature or voltage sensor

inside the Header1 board, charging battery is made

by supplying a low rate continuous current throughout

a resistor from Wall input to the battery. There is a

internal resistor of 470Ω rated at 1W of power

dissipation for this purpose.

Designers must calculate the theoretical value of the

charge resistor (Rchrg) and, if it is close to the internal

resistor of 470Ω, no more actions are needed but, if

the final result is lower than 470Ω then, an external

resistor must be place so that the parallel value of the

external resistor with the internal one matches the

theoretical value.

These are the steps:

 Decide the time, in hours, required to full charge

the battery from a full discharged state. Suitable

values are form 10 to 16. Let’s call it Tchrg (in

hours).

 Calculate the charge current for a giving battery

capacity C (in Amperes x hour) computed as Ichrg

= C/Tchrg

 Decide a voltage for Wall input. The closer to the

battery voltage, the better. Let’s call it Vwall.

 Calculate Rchrg as:

Rchrg = (VWALL-Vn)/Ichrg

 Calculate the power dissipated by this resistor as:

PRchrg = Rchrg * (Ichrg)
2

Then, compares Rchrg and PRchrg with the internal

value of 470Ω, 1W. It they are close enough, just let

the internal resistor charge the battery and recalculate

the charging time (in hours) as

Tchrg = C / (Vwall-Vn) / 470

If Rchrg is quite lower than 470Ω, then connect an

external resistor (Rext) to the battery charge connector

(see 2.1) so that

Rext = (470·Rchrg)/470-Rchrg)

Which is the solution of the parallel resistor equation.

Maintain the rated power calculated for Rchrg

3.3 Battery mode

Note: Battery Mode operation is selected by

leaving unconnected the jumper 1, as shown in

Figure 2.

The Battery Mode is intended for applications where

the main power source is a battery, and Wall Input is

used just for slow battery charging, saving battery

energy or for feeding the board when the battery

needs to be temporally disconnected.

The 5V power to Rasperry Pi is always obtained from

the input source that exhibits the upper voltage value

and automatic balance is made when one source falls

below the other one without affecting the stability of

Raspberry Pi power supply.

Shutdown condition: the shutdown command is

issued only when the Battery input voltage falls below

min_voltage for more than five seconds, no matters

what voltage is at Wall input. As in Wall mode, it is

possible to cut the power of the DV0 bus setting the

parameter –cut_vbus as a command line parameter of

dv0_manager.

Energy needs: The battery must supply energy to the

Raspberry Board and DV0 bus during the absence of

wall input source. Also, if the designer plans to keep

the system in stand by and start it at scheduled time,

the battery must supply energy to the Header1 control

unit to maintain the real time clock and the restart

scheduler.

Maximum charge current for this method is C/4.
However, we recommend at maximum current of
C/10 for completely safe operation an wide
battery life

CAUTION:

[Ah] C =
(Pbattery·Tsd)/3600 + Vn· Icontrol(Off)·Trtc

Vn

DVO HEADER1

Header1-Page 18 ©2015 deValirian

3.3.1 Battery capacity calculation procedure

To calculate the battery capacity, designers must

follows these steps:

 Determine Pbattery from 2.3.2.

 Obtain Icontrol(Off) from 2.3.3

 Decide how many time (in hours) must the full

system (Raspberry plus DV0 boards running) be

powered by the battery (that is, no Wall input

energy). Let’s call it Ton.

 Decide how many time (in hours) must the system

be in off state (that is, Raspberry and DV0 boards

off and Header1 control unit keeps running the

real time clock) powered only by the battery. Let’s

call it Toff.

Then, for a given battery with nominal voltage Vn, the

capacity C (in Amperes x Hour) required is

C = Pbattery·Ton / Vn+ Icontrol(Off)*Toff

3.3.2 Battery charge calculation procedure

There is no methodological difference between wall

mode and battery mode for charge calculations

purposes, just follow the same steps described at

3.2.2. However, it is worth to note that the power

required for the charge resistor will be much higher

that 1W, so the internal resistance of the Header1 is

useless in this mode and an external resistor will be

mandatory.

3.4 Battery dimensioning examples

The following examples cover the mainly intended use

of Header1 board:

 Clean shutdown to avoid SD card corruption (wall

mode)

 Control and surveillance systems (battery mode)

3.4.1 Wall mode calculations example

Case: the system is a panel information in a mall. It is

supplied by a wall input source form 8.00 am. to 10.00

pm. and has Raspberry Pi© A model with no camera

and two IO_A boards connected to the bus. There is

no need to save the state of IO_A boards, so –

cut_vbus parameter is set when invoking

dv0_manager.

At 8.00, the power at Wall input is present and the

Header1 will start the Raspberry and the DV0 bus

boards. It is required that the Header1 sets the real

time clock date (kept during all night long) to the

Raspberry operating system so –force_date

parameter is set when invoking dv0_manager.

Assuming that the display is powered by an external

source, and using the Example 1 from 2.3.3, we know

that the power of Wall input is Pwall = 5.31 [W]. Also

from 2.3.3, the power consumption during shutdown

time (when wall input disappears) is Pbattery(ON) = 5.26

- 1.675 = 3.575 [W] (because cut_vbus is set).

Icontrol(Off) is 0.0035A (from 2.3.3)

Several measuring shutdown time gives a mean time

of 12 seconds. Let’s be conservative and set Tsd as 20

seconds so dv0_manager is called with –

shutdown_time 20.

Battery has to survive during 10.00 pm to 8.00 am so

Trtc is 10.

A small 9V, PP3, NiMH seems to be the better choice

to this scenario. Only its capacity has to be calculate

to full set battery requirements.

NOTE: Due to the similitude to common PP3 non

rechargeable batteries, witch have 9V of nominal

voltage, most distributors declare PP3 NiMH as a 9V

battery but, in fact, they can made as seven cells of

NiMH, witch yields a 8.4V nominal voltage or eight

cells, witch yields 9.6V nominal voltage. Let set Vn =

8.4V, as it’s the most common value on the market.

Then the capacity C required is

So we can choice a common PP3, 8.4V, 200mA,

NiMH battery. Setting C=200mAh while discharge C is

37mAh means that the level of discharge is, roughly,

20%. This value is far from 100%, so battery life

endurance is mostly improve. Some manufactures

publish life estimation depending on discharge depth

percent (but some other not)

NOTE: Not only C is important to specify the battery.

Designers must check the internal resistance value of

the selected battery and calculate the voltage drop

during shutdown time. Then, knowing that the power

delivered by the battery is Pbattery(ON)= 3.575W at 8.4V,

we conclude that the current drown from the battery is

Ibat = 3.575/8.4 = 0.425 [A]. This peak of current,

multiplied by the internal battery resistor must ensure

that the voltages at Battery input is always greater

than 6.5V. That is Rbat < (8.4-6.5)/0.435 = 4.36 [Ω]

(Pbattery·Tsd)/3600 + Vn· Icontrol(Off)·Trtc
C =

C =

Vn

(3.575·20)/3600 + 8.4· 0.0035·10

8.4

C = 0.037 [Ah] = 37 [mAh]

DVO HEADER1

Header1-Page 19 ©2015 deValirian

As for the charge battery, the scenario assures a

charging time from 8.00 am to 10.00 pm., that is, 14

hours of charging. The target is to get a full charge

from a full discharge state (maybe after holydays) in

one day, to assure a all night long supply. Let’s try a

charging current ratio of C/12. Required charge

current is:

Ichrg = C/Tchrg = 0.2/12 = 0.016 [A]

For the Wall input voltage, designers must ensure that

a full charge battery voltage is always lower that the

nominal Wall voltage. Since the selected battery have

7 cells of NiMH and each cell can have a full charge

voltage of 1.8V, then, a Wall input greater than 7 x 1.8

= 12V. Let’s try a common value of 15V as a nominal

voltage for Wall input adapter and then compute Rchrg

and PRchrg:

Rchrg = (VWALL-Vn)/Ichrg = (15-8.4)/0.016 = 412[Ω]

PRchrg = Rchrg * (Ichrg)
2
 = 412 *(0.016)

2
= 0.1 [W]

Since the internal resistance is 470Ω, rated to 1W, it

seems that there are not heat dissipation issues and

that the calculated value is so close to the internal

value that it is worth to check the behavior of the

charge method using only the internal resistance, thus

avoiding place any external resistor.

If the charge resistor is just 470Ω, the charge current

is Ichrg = (15-8.4)/470 = 0.014 A. In terms of C ratio,

that means a charge current of C/14 or, in other

words, a full charging time of 14 hours. Just the time

allowed for charging, no security factor available.

Designers hate not to have a security factor for their

calculus, and dealing with batteries, is a very good

practice to left security margins. Fortunately, in this

example, a full charge cycle is only needed after a

vocational period and, even that, not all charge is

need at the end of the day because only a 20% of the

total energy is required every night.

Finally, the power required to wall input adapter is

obtained from the example 1 of 2.3.3. as Pwall =

5.31[W] and a current of Iwall = Pwall / Vwall = 5.31/15 =

0.354 [A]

Software: example of dv0_manager call:

dv0_manager –cut_vbus –shutdown_time 20

–force_date

The cabling diagram is shown at Figure

3.4.2 Battery mode calculations examples.

Case 1: Night animal movement capture. The system

is a Raspberry Pi model A with a infrared camera

NoIR (infrared light is supplied by other source). Each

night, at 1.00 am the system starts and capture video

during 3 hours and it is required to last for a 7 days.

No restrictions on weight or size so a 12V Lead Acid

battery type is selected.

The battery must supply full energy to the Camera-

Raspberry system during 3 hours per day and must

fed the Header1 control unit 21 hours to allow starting

at 1.00 each day. Software settings are explained

below.

From 2.3.3 we obtain that the Raspberry Pi power

during on state is

Prasp = 5 x (0.5+0.2) / 0.8 = 4.4 [W]

And with a PDV0 = 0, the battery power at ON state is

Fig. 11 Wall mode example

8.4V (9V)

PP3

200mAh

15V / 0.4A

 Wall Input adapter: 15V, power > 5.31W,

current > 0.354A

 Battery: PP3, 8.4V, 200mA, NiMH

 External charge resistor: none

SUMMARY OF REQUIREMENTS:

:

DVO HEADER1

Header1-Page 20 ©2015 deValirian

Pbattery(ON) = 4.4 + 0.3 + 0.170 = 4.9 [W]

The battery power at OFF state is, from 2.3.3

Pcontrol(OFF) = Vbat x Icontrol(OFF) = 12 x 0.0035 = 0.042 [W]

The capacity per day is

C(per day) = (Pbattery(ON) x 3 + Pcontrol(OFF) x 21)/ 12 [Ah]

C(per day) = (4.9 x 3 + 0.042 x 21)/ 12 = 1.3 [Ah]

And multiplying by seven days, we obtain the total

capacity:

C = 1.3 x 7 = 9.1 [Ah]

Note: Auto discharge issues have been ignored due

to the low period of time considered.

Software:

Example of dv0_manager call:

dv0_manager –force_date -min_voltage 118

-start_up_time 1:00

Note that a minimum voltage of 11.8 volts is set, so

when the battery charge is close to the end, either a

shutdown will be performed or no startup will be

launched.

The parameter start_up_time tells the dv0_manager

the periodically starting minute, hour or day (see

section 4.3.13 for more details). In this example, the

Header1 will start the Raspberry board every day at 1

hour and 0 minutes.

At 4 o’clock, cron process must tell to the

dv0_manager that is time to make a shutdown and go

to OFF state. This is achieved either with a killall

command with the signal power:

killall –s SIGPWR dv0_manager

or by using the utility dv0_test free supplied with

dv0_manager:

dv0_test –power_off

Figure 12 shows the battery connection for this case.

Case 2: Unassisted meteorological station. The

system is a Raspberry Pi A model with camera and

two IO boards for weather data acquisition and a 3G

USB dongle to send the acquired data and images to

a server in internet. This dongle consumes 0.3A at 5V

from USB. The station is powered from the mains

network but must withstand a lack of mains power for

at least 4 hours. It is mandatory that the battery full

charge has to be recovered after 8 hours.

Let’s suppose that there are a weight or size

requirements and choice a 7.2V NiMH battery,

together with a Wall adapter of 12V (both are quite

common on the shelf values)

From 2.3.3 obtain the Raspberry consumption and

add the 3G dongle consumption

Prasp = 5 x (0.5+0.2+0.3) / 0.8 = 6.25 [W]

From 2.3.3. obtain the DV0 consumption

PDVO = 5 x (0.134 + 0.134) / 0.8 = 1.675 [W]

From 2.3.3 and the above calculus compute the

power from the battery

Pbattery(ON) = Prasp+PDV0+Pcontrol(ON)+Pdiode(ON) =

= 6.25 + 1.675 + 0.3 + 0.17 = 8.4 [W]

Then, calculate the capacity C of the battery knowing

that Ton is set to 4 by the requirements

C = Pbattery·Ton / Vn = 8.4·4 / 7.2 = 4.6 [Ah]

Because of full charge is required after 6 hours, the

charge current must be C/8 so

Ichrg = 4.6 / 8 = 0.575 [A]

Witch yields a charge resistor of

Rchrg = (Vwall-Vn)/Ichrg = (12-7.2) / 0.575 = 8 [Ω]

Sealed Lead

Acid

12V, 9.1Ah

Fig. 12 Battery mode example Case 1

DVO HEADER1

Header1-Page 21 ©2015 deValirian

Because the internal resistor value is 470Ω that is

much bigger that 8Ω, there is no need to recalculate

the exact parallel value and we set Rext as 8Ω. This

resistor should dissipate a power of:

PRchrg = Rchrg * (Ichrg)
2
 = 8 *(0.575)

2
= 2.64 [W]

So a 5W resistor is selected.

The power required for the wall input adapter must

include the charge current:

Pwall = Prasp+PDV0+Pcontrol+Pdiode+Pcharge

Where Pcharge is

Pcharge = Vwall (Vwall - Vbat - 0.2) / Rchrg =

= 12 (12-7.2-0.2) /8 = 6.89 [W]

And the rest of terms have been calculate above, so

Pwall = 6.26 + 1.675 + 0.3 + 0.17 + 6.89 = 15.3 [W]

IWall = PWall/VWall = 15.3 / 12 = 1.275 [A]

Figure 12 illustrates the schematic of wiring

Software:

Example of dv0_manager call:

dv0_manager –force_date

Note that no minimum voltage is set because the

default set of min_value is 6V, witch suits perfectly to

a 7.2 NiMH battery

If eventually, the battery falls below 6V, the Header1

control unit will cleanly shutdown the Raspberry but

even at 6V, there is some remained energy inside the

battery and the control unit can maintains the real

time clock for a while, until the wall input returns.

Then, thanks to the –force_date parameter, the Linux

operating system will restart with a correct time and

date.

12V / 1.3A

NiMH

7.2V 4600mAh

8Ω 5W

Fig. 13 Battery mode example Case 2

 Wall Input adapter: 12V, power > 15.3W,

current > 1.275A

 Battery: NiMH, 7.2V 4.6 Amperes hour

 External charge resistor: 8Ω 5W

SUMMARY OF REQUIREMENTS:

:

The temperature that can reach a resistor
working at is rated power can be as great
as 90 degrees (Celsius). In general, the
great the power rated, the great the
volume of the resistor and thus, the lower
the temperature rising. As rule of thumb,
selecting a rated power twice the calculate
power reduce the temperature rising to 40
degrees upon the ambient.

Mount this resistance in a place that
natural or forced air convection ensures a
good dissipation.

CAUTION:

DVO HEADER1

Header1-Page 22 ©2015 deValirian

4. SOFTWARE

The Header1 board comes with several free

programs, API and examples of C, Python, Java and

Linux scripts. Their goal is to configure the power

up/down behavior and scheduling and to allow user

programs to gain access of the real word reading and

writing DV0 input/output boards.

These are all the free software parts related to

Header1:

 The dv0_manager program: the one and only one

who talks with the Header1 control unit.

 The dv0_test utility: command program to test the

dv0_manager and to send commands and

settings to the Header1 control board. Intended to

be used in Linux scripts

 The DV0 API libraries in C, Java and Python. A

full set of functions to control the Header1 and the

DV0 input/output board connected to the DV0 bus

 Source code examples written in C, Python and

Java (Android)

All these parts and their associate documentation are

free available in the Technical Information

section of www.devalirian.com

4.1 Architecture description

Local architecture is the most common scenario and it

is shown in the Figure 14.

In this case, the dv0_manager program waits for a

socket connection listening to the interface “localhost”

at port “6900”. Both dv0_test program and user

applications connect to dv0_manager using the

function “Open”, with that interface and port (which

are the default values). The dv0_manager “tunnels”

commands from dv0_test and user applications to the

Header1 control unit through the Raspberry Pi serial

interface ttyAMA0. Note that all elements run inside

the Raspberry Pi.

Since the socket level physical layer is transparent to

the user applications, it is possible to replicate the

local architecture to a remote architecture, where the

command and data traffic between dv0_manager and

DV0 API or dv0_test travel through internet. Figure 15

shows this case.

In this example, the Raspberry is connected to

internet via an interface which IP address is

10.10.10.10, no matter if it is an Ethernet or a WiFi

connection. To accept data and commands from this

interface as their come from localhost, only a few

initialization changes must be performed. More

exactly, the dv0_manager must be called with the –

ip_address command line parameter :

dv0_manager –ip_address 10.10.10.10

and the “Open” function of DVO API requires a string

with that IP address:

Open(”10.10.10.10”)

Note that when using a remote connection, some

security issues must be taken into account to avoid

unexpected and unwanted connection. See 4.3 for

more information on login restrictions for a remote

access.

dv0_manager

Header1

Linux

Sockets

Level

Eth0/WiFi

Raspberry Pi

10.10.10.10

DVO API dv0_test

User App

Linux Sockets Level

Remote system

INTERNET

Fig. 15 Remote access architecture

dv0_manager

DVO API dv0_test

Linux Sockets Level

Header1

ttyAMA0 Raspberry Pi

User App

localhost, 6900

Fig. 14 Local architecture

http://www.devalirian.com/

DVO HEADER1

Header1-Page 23 ©2015 deValirian

4.2 dv0_manager installation

Log in using “pi” login name, download dv0_manager

and dv0_test from the Technical Information section

of www.devalirian.com and place into some directory.

For instance, create and use /home/pi/dv0

Allow them execution permissions with chmod

command:

chmod +x *

Edit the file /etc/rc.local (you must need root

permissions so remember to use the command sudo

when invoking your preferred Linux editor. For

example:

sudo nano /etc/rc.local

In almost all Linux distributions, this file is intended to

contents the last commands that must be launched

when the operating system boot is finish.

Add a line with the dv0_manager and all desired

command line parameters and FINISH THE LINE with

the ampersand character.

/home/pi/dv0/dv0_manager –force_date &

The inclusion of the ampersand character at the end

of the line is mandatory or the Raspberry boot

process never end. If you plan to launch

dv0_manager in a separately script, it could be

interesting to use its return value

4.2.1 dv0_manager return values

If there is something wrong, this program returns

prematurely with the following codes:

 255 (-1) if there is some syntax error at the

command line

 254 (-2) if the serial channel ttyAMA0 is not free

(see below)

 253 (-3) if the socket library doesn’t open the port

6900 or whatever declared with –port parameter.

Try another port

4.2.2 Unblocking ttyAMA0

Since dv0_manager uses the serial channel ttyAMA0

to communicate with the Header1 control board, this

serial channel must be freely available, no other

operating system part can share this channel with

dv0_manager. Unfortunately, as a reminder of ancient

times where the console was connected to a serial

channel, the Raspberry Pi distros initial configuration

take control of this channel as a root console.

To free this channel, edit the boot/cmdline.txt file with

root permissions:

sudo nano /boot/cmdline.txt

and remove, carefully, both commands

console=ttyAMA0,115200

kgdboc=ttyAMA0,115200

Then, edit inittab file:

sudo nano /etc/inittab

and comment or remove lines that contain ttyAMA0,

Finally, restart Linux and execute the dv0_test

program:

cd /home/pi/dv0

./dv0_test

If every is fine, the program shows the message

“Connection to localhost successful”. Else, either

there is a problem with the command line parameters,

or with the serial channel or with the socket port.

To know what the problem is, begin with killing the

running dv0_manager (if it still runs):

sudo killall dv0_manager

Then execute dv0_manager direct from the shell who

will tell which one of the three failure condition

explained in 4.2.1 is responsible for the malfunction.

http://www.devalirian.com/

DVO HEADER1

Header1-Page 24 ©2015 deValirian

4.3 dv0_manager command line

parameters

This section describes the command line parameters

accepted by the dv0_manager, their meaning, limits

and default values. The “default value” is the value

that dv0_manager uses if the corresponding

parameter is not present at the command line call.

Table 3. dv0_manager parameters summary

Parameter Value Default value

-serial_port Port device /dev/ttyAMA0

-port Port 6900

-ip_address IP Address localhost

-login Login name none

-shutdown_command Command sudo
shutdown –h
now

-shutdown_time Seconds 30

-boot_time Seconds 30

-restart_time Minutes 0

-min_voltage Tenths of V 60

-cut_vbus None false

-no_push_active None true

-force_date None false

-watch_dog Seconds 0

4.3.1 Parameter -serial_port <port>

Port is the name of the device where the header

board is attached. If the header board is the Header1,

this device is /dev/ttyAMA0, but for others headers

can be an USB-Serial emulator like /dev/ttyUSB0.

Default value: /dev/ttyAMA0 (Raspberry Pi)

4.3.2 Parameter -port <port number>

This is the TCP port number that dv0_manager listens

to accept connections from DV0 API or dv0_test. It is

not usual to change the default value of 6900 but in

some cases, this value could be caught by other

application.

Default value: 6900

Minimum value: 5000

4.3.3 Parameter -ip_address <ip_address>

This parameter is useful only when the user

applications or the dv0_test run in other machine that

the Raspberry Pi. The <ipaddress> must be equal to

the interface IP where the connection to a local net is

made. If all they run inside the same machine, the IP

address is “localhost” which is the default value and

so this parameter is not needed.

To know what IP address is assigned to an net port,

execute the command:

ifconfig -a

For example, the result of this command can be:

eth0 Link encap:EthernetHWaddr b8:27:eb:c0:fb:76

 inet addr:10.0.0.2 Bcast:10.255.255.255

 (…only two lines are shown…)

Then the call to dv0_manager should be

dv0_manager –ip_address 10.0.0.2

Default value: localhost

4.3.4 Parameter -login <login name>

When this parameter is set, all incoming connections

to dv0_manager must be opened with the giving login

name and with their corresponding password. For

example, if the call to dv0_manager is

dv0_manager –login pi

then, the initial DV0 API function Open must be

Open(”localhost”, 0, ”pi”, ”raspberry”)

and the dv0_test should be

dv0_test –login pi –password raspberry

Note that dv0_manager needs to gain access to the

Linux password files in order to check the validity of

the password and that means that it must be runnning

with root privileges. See 4.6.1 for more information

4.3.5 Parameter -shutdown_command

“<command>”

This is the command that the dv0_manager executes

when a power off condition becomes true. Can be

null, that is ” ” if no shutdown generation is desired.

Default value: ”sudo shutdown –h now”

4.3.6 Parameter -shutdown_time <seconds>

Number of seconds that the Header1 control unit

waits before cutting off the power to the Raspberry Pi

once there is a Power Off condition true

Default value: 60

Maximum value: 32767

4.3.7 Parameter -boot_time <seconds>

Number of seconds that the Header1 control unit

waits before considering that the boot process is

finished and thus accept and check Power Off

conditions.

Default value: 60

Maximum value: 32767

DVO HEADER1

Header1-Page 25 ©2015 deValirian

4.3.8 Parameter -restart_time <minutes>

This parameter defines the number of minutes that

the Header1 control unit must wait to generate a

Power On condition after a power off condition has

been execute successfully. See 1.1.2 Power Off

Conditions for more explanations about their causes.

Intended to generate a full hardware reset after a

watch dog condition or when a complete system

initialization is required. See 4.5 for useful Linux

scripts examples using this parameter and the

dv0_manager.

Notes:

 This timer begins to run AFTER the time defined

by the shutdown_time parameter.

 A value of zero means that the Raspberry never

will be restarted.

 Restarting is only allowed if the input voltage is

greater than 6V whichever Battery or Wall input is

the greater one.

 Once restarted, the Header1 control units forgets

this value so dv0_manager must be called with

this parameter again.

Default value: 0 (Never)

Maximum value: 32767

4.3.9 Parameter -min_voltage <voltage>

Defines the threshold voltage (in tenths of volts) of the

battery voltage that generates a power off or power on

condition (if it last for a 5 seconds). The power off

level is exactly this value, while the power on

condition is at 200mV over this value. This hysteresis

behavior avoids noise dependence when the battery

voltages is close to min_voltage. For example, if the

desired threshold is 11.9V, then

dv0_manager –min_voltage 119

In this example, power off condition is at 11.9, but

power on waits until the voltage exceeds 12.1V.

Default value: 60 (6V)

Minimum value: 60 (6V)

Maximum value: 240 (240V)

4.3.10 Parameter -cut_vbus

This parameter forces the Header1 control unit to cut

the 5V power of DV0 bus as soon as a Power Off

condition becomes true, without waiting for the

shutdown_time.

Very useful in wall mode when a little battery is used

to assure a clean shutdown. However, there are

situations when the user application must set all the

input/output signals to a pre-defined state before

power off and then this parameter can’t be set.

Default value: false (DV0 voltage falls after the

shutdown time, together with the voltage of the

Raspberry board)

4.3.11 Parameter -no_push_active

Setting this parameter forces the Header1 control unit

to ignore the push button input signal

Default value: false (Header1 control unit doesn’t

ignore the push button signal)

4.3.12 Parameter -force_date

When this parameter is set, dv0_manager sets the

Linux date and time kept by the Header1 control unit

every time that the system restart.

Header1 control unit date and time can be set using

either the dv0_program or the API function SetDate

(see 4.6.2)

Default value: false (date is not set)

4.3.13 Parameter -start_up_time dd:hh:mm

Defines the periodicity at which the Header1 control

unit will power up the system in days, hours and

minutes.

Examples:

-start_time 10 Means every hour at minute 10

-start_time 8:10 Means every day at 8 hours and 10

minutes

-start_time 3:08:10 Means every month, at day 3, at

day at 8 hours and 10 minutes

Note: the value’s correctness is not check. If there is

something impossible about days, hours or minutes,

dv0_manager will assume as 1.

Default value: never

4.3.14 Parameter -watch_dog <seconds>

If this parameter is set and greater than zero, the user

must issue a watchdog reset periodically with a period

smaller than the number of seconds specified. If not,

dv0_manager will generate a Power Off sequence.

Even if the dv0_manager is hanged and don’t issue a

proper shutdown command, the Header1 control unit

will power off the Raspberry Pi (to restart

automatically after one minute, set -restart_time 1).

This feature is specially for non assisted systems to

restart the Raspberry if some software dysfunction or

DVO HEADER1

Header1-Page 26 ©2015 deValirian

electromagnetic interference hangs the Linux of the

Raspberry.

Default value: 0 (No watch dog reset)

Maximum value: 255

4.4 dv0_test command line parameters

The dv0_test program is intended to be a system tool

for testing board connections, verifying dv0_manager

correctness and programming Linux scripts.

This section describes the command line parameters

accepted by the dv0_test, their meaning, limits and

default values. Table 4 summarizes these parameters

Table 4. dv0_manager parameters summary

Parameter Value Default value

-ip_address IP Address localhost

-port Port number 6900

-login Login name None

-password Password None

-set_date None None

-set_restart_time Minutes 0

-power_off None None

-get_manifest Address None

-watch_dog_reset None None

4.4.1 Parameter -ip_address <ip address>

Use this parameter when dv0_manager has been

called with this parameter as well. As explained in

4.3.3 section, if dv0_manager is invoked as

dv0_manager –ip_address 10.0.0.2

then, to communicate with dv0_manager, dv0_test

must be called as

dv0_test –ip_address 10.0.0.2

NOTE: when both dv0_manager and dv0_test run in

the same machine, they can use the interface

“localhost” to establish the link, which is the default

value for both of them. In this case, there is no need

to set this parameter.

4.4.2 Parameter -port <Port number>

This parameter must be set only if the default port

6900 is occupied by another application forcing

dv0_manager to be called with this parameter. For

example:

dv0_manager –port 11200

then,

dv0_test –port 11200

4.4.3 Parameter -login <login name>

When dv0_manager has been called with this

parameter then all further connections to its must

supply not only the same login name but its password.

For example, as in the 4.3.4 section, when

dv0_manager is called like

dv0_manager –login pi

then, dv0_test must supply the same login and its

valid password

dv0_test –login pi –password raspberry

Note: This password is not encrypted while travelling

through internet.

4.4.4 Parameter -password <password>

Used always together with -login parameter described

above.

4.4.5 Parameter -set_date

This parameters forces dv0_manager to store the

Linux date and time into the Header1 control unit. The

real time clock of this control unit will continue running

from this value and used for the -start_up_time

parameter and to restore it to the Linux at Power On

time (only if parameter -force_date has been set for

the dv0_manager program),

4.4.6 Parameter -set_restart_time <minutes>

Tells dv0_manager the number of minutes that will

take the next restart time. It overrides the

dv0_manager -restart_time parameter .

4.4.7 Parameter -power_off

This parameter forces dv0_manager to start a Power

Off process.

4.4.8 Parameter -get_manifest <address>

The manifest is a readable text who explains the

features available from an DVO input/output board.

The value of <address> must match with the micro-

switch selector of the board that has to be tested.

For example, if there is a model IO_A board

connected which micro-switch address selector is 7,

then, when executing

dv0_test -get_manifest 7

the response will be

DVO HEADER1

Header1-Page 27 ©2015 deValirian

Board name : IO_A

PWM Outputs : 3

Pulse Inputs : 3

Analog Inputs : 2

Digital output group number 0 has 2 outputs

Digital output group number 1 has 4 outputs

Digital input group number 0 has 3 inputs

Which are the contents of a model IO_A board.

It is worth to note that if this command is successful,

that means that the whole installation is correct:

dvo_manager is running, it is connected with the

Header1 control unit and the Header1 DV0 Bus

cabling is correct as well.

4.4.9 Parameter -watch_dog_reset

When the –watch_dog parameter is set for more than

0 seconds at the dv0_manager command line,

someone MUST send a watch dog reset command to

the Header1 control unit. If not, the Raspberry Pi will

be restarted.

Using dv0_test with -watch_dog_resets periodically is

one way to avoid restarting (the other way is through

the DVO API function ResetWatchDog)

See 4.5 for an example on how to reset the watch dog

using crontab and dv0_test.

4.4.10 Return values of dv0_test

On successful, dv0_test returns 0. If not, it returns

prematurely with the following return values

 255 (-1) dv0_manager does not respond. Check

IpAddress and Port

 254 (-2) dv0_manager refuses login or password

 253 (-3) DVO header board is not connected

 252 (-5) Invalid board address

 251 (-6) Parameter syntax error

DVO HEADER1

Header1-Page 28 ©2015 deValirian

4.5 Examples of dv0_manager, dv0_test

and Linux scripts

This section illustrates some configuration of

dv0_manager and the corresponding calls of

dv0_test.

Note: In all following examples, it is assumed that the

dv0_manager runs in the directory /home/pi/dv0 and

that in the /etc/rc.local, there is the command:

cd /home/pi/dv0

prior to call dv0_manager. For example, the simplest

installation of dv0_manager is just edit /etc/rc.local

and write into it:

cd /home/pi/dv0

./dv0_manager &

Note that the final ampersand is always mandatory.

Figure 17 shows how to fit the shutdown_time and the

boot_time (once they are measured) and how to force

the date to the system at power up. Designers must

find some way to obtain the actual date and time (at

least, one time) and then, call dv0_test with -set_date

parameter while Figure 18 shows the same scenario

but in a remote architecture

Figure 19 shows how to power off and restart the

whole system (Raspberry board and DVO boards).

When issuing a -power_off without setting the restart

time, then there is no automatic restart. Restart time

can be set when calling dv0_test or when calling

dv0_manager.

Figure 20 illustrates how to customize the shutdown

command so that a previous settings of the DV0

boards outputs are accomplished before issuing the

true shutdown.

./dv0_manager –force_date -shutdown_time 20 -boot_time 30 &

Fig. 17 Local architecture with forcing date and fitted boot and shutdown time

Somewhere once the system date is well known:

File /etc/rc.local:

./dv0_test -set_date

./dv0_manager –ip_address 10.0.0.1 –force_date -shutdown_time 20 -boot_time 30 &

Fig. 18 Remote architecture with forcing date and fitted boot and shutdown time

Somewhere once the system date is well known (the date comes from the machine where dv0_manager runs):

File /etc/rc.local:

./dv0_test –ip_address 10.0.0.1 -set_date

./dv0_manager –force_date -shutdown_time 20 -boot_time 30 &

Fig. 19 Several ways to power off and to restart with fitted boot and shutdown time

Just power off, and power on from the pushbutton or turning off-on input power:

File /etc/rc.local:

./dv0_test –power_off

Forcing a restart one minute after the shutdown process finished:

 ./dv0_test –power_off -set_restart_time 1

Another way to force a power off: sending a SIGPWR to dv0_manager:

 sudo killall -s SIGPWR dv0_manager

DVO HEADER1

Header1-Page 29 ©2015 deValirian

To do that, dv0_manager is set to call a script named

my_script, who, thanks to a user program based on

the DV0 API, sets the outputs and then executes the

true shutdown.

The new script “my_script” will be executed every time

that a Power Off condition becomes true.

Figure 21 describes how to protect the system by a

watch dog. The dv0_manager is call with the

parameter -watch_dog set to 180 seconds, so

someone must reset periodically this timer by calling

dv0_test with the -wath_dog_reset. The obvious

solution is to add a line in the /etc/crontab that call it

every minute.

Finally, a script for managing the return value of

dv0_test is shown in the Figure 22. This scripts begins

calling dv0_test with the -get_manifest of the board

number supplied as a first parameter of the script.

Then, the variable $Res holds de result of dv0_test

(“$&”) and compares it with all possible return values

described in 4.4.10

./dv0_manager -shutdown_command my_script &

Fig. 20 Customized shutdown

Edit my_script and save it in the same directory of dv0_manager (/home/pi/dv0):

File /etc/rc.local:

do some DV0 API based program and then issue a Linux shutdown

sudo shutdown –h now

Don’t forget to make it executable:

 sudo +x my_script

./dv0_manager –watch_dog 180 &

Fig. 21 Watchdog reset from crontab using dv0_test

Edit /etc/crontab and add the following line

File /etc/rc.local:

*/1 * * * * /home/pi/dv0/dv0_test -watch_dog_reset

./dv0_test -get_manifest $1 1>&null

Res="$?"

if ["$Res" = "0"]; then

 echo "Board is Ok"

elif ["$Res" = "255"]; then

 echo "dv0_manager does not respond"

elif ["$Res" = "254"]; then

 echo "invalid login or password"

elif ["$Res" = "253"]; then

 echo "Header not connected"

elif ["$Res" = "252"]; then

 echo "Invalid board address"

else

 echo "Parameter syntax error"

fi

Fig. 22 Script for managing dv0_test return values

DVO HEADER1

Header1-Page 30 ©2015 deValirian

4.6 DV0 API

The DV0 API contains a set of functions intended to manage the Header1 control unit and all DVO input/output

expansion board connected to the bus. There are a free implementation of this API, for Java, C++ and Python

languages.

The steps for managing the Header1 control board

programmatically are:

 Create an instance of the class DV0

 Call the function Open

 If successful, call Header1 functions related.

In the following sections, an example of each language will

be given creating instance, calling Open function and

calling related functions and more complete examples can

be found at the end of this section.

Table 5 summarize the functions related to Header1. Note that only the name of the function is listed in the table

below. This is because the parameters and return values are slightly different among the three implementation (Java,

C++ and Python).

Table 5. Header1 related functions

Name Description

Open Initial and mandatory function to connect with dv0_manager

SetDate Set the date and time of Header1 control unit

GetDate Get the current date and time kept by the Header1 control unit

SetRestartTime Set restart time

PowerOff Starts a power off sequence

ResetWatchDog Clears the watch dog timer (if enabled)

GetHeaderInfo Obtains status and version info of the Header1 control unit

4.6.1 Creating an instance of DV0 class

Java, C++ and Python are all object oriented languages and is useful to encapsulate all the accessing to the API

throughout one object. All subsequent managing functions will pass through this variable. Let’s assume that this

variable will be called dv0. For C++ or Java, the creation of this variable is thoroughly:

DV0 dv0; // C++ or Java

And so is for Python, but slightly different (actually, it is not a class)

import dv0

This data sheet summarizes the features of DV0

API functions related to Header1 board. It is not

intended to be a comprehensive reference

source. For more information, refer to the DV0

API Reference Guide for C++, Java and Python

at www.devalirian.com, in the Technical

Information section

WARNING:

:

http://www.devalirian.com/

DVO HEADER1

Header1-Page 31 ©2015 deValirian

4.6.2 Connecting to dv0_manager

The connection to dv0_manager is made through the function Open.

Function Open generic description

int Open(IpAddress, Port, Login, Password);

Open connection with the dv0_manager. Mandatory for all other members. Blocking.

Parameters:
IpAddress is the IP where dv0_manager listens to incoming connections. By default
is "localhost" that suits perfectly is this application runs in the same machine that dv0_manager does.
If a remote connection is desired, call dv0_manager with the argument -ip_address followed by the IP
address of the internet interface of your board (use ifconfig to know it) and pass this value to the
current IpAddress parameter.
Port is the UDP port where dv0_manager listens to incoming connections. By default is 6900 but
DV0_manager can listen to whatever port selected by command line argument -port. In this case, give the
same value to current Port parameter. Useful only if another application had catch this port.
Login and Password are required if the dv0_manager daemon is called with -login <username>
argument. Current Login parameter must match with <username> and a valid Password must be entered

Return values
Returns 0 if connection is successful
DV_NOT_CONNECTION if dv0_manager does not respond. Check IpAddress and Port
DV_INVALID_LOGIN if dv0_manager refuses login or password

C++ Syntax

int Open(char *IpAddress = NULL, int Port = 0, char *Login = NULL, char *Password = NULL);

Java Syntax

int Open(String IpAddress, int Port, String Login, String Password);

Python Syntax

def Open(ipAddress, port, login, password):

Example: Connect to a dv0_manager running in the same Raspberry that the current program, using de default port

and with no login required. The dv0_manager call can be:

/home/pi/dv0/dv0_manager –force_date

From a C++ user program, then:

DV0 dv0;

…

int r = dv0.Open(NULL, 0, NULL, NULL)

if (r == 0) {

…

} else DisplayError(r);

From a Java user program, then:

DV0 dv0;

…

int r = dv0.Open(””, 0, ””, ””)

if (r == 0) {

…

} else DisplayError(r);

From a Python program, there are no so much differences:

import dv0

res = dv0.Open('',0,'','')

if (res == 0):

 print ("Connected to dv0_manager")

else:

DVO HEADER1

Header1-Page 32 ©2015 deValirian

 DisplayError(res)

Example: Connect to a dv0_manager running in a Raspberry connected to internet through the interface 10.0.0.2,

and the current program running somewhere, login name ‘pi’ required (with default password ‘raspberry’) , using de

default port. The dv0_manager call can be:

/home/pi/dv0/dv0_manager –ip_address 10.0.0.2 –force_date –login pi

From a C++ and Java user program, then

DV0 dv0;

…

int r = dv0.Open(”10.0.0.2”, 0, ”pi”, ”raspberry”)

if (r == 0) {

…

} else DisplayError(r);

From a Python program, there are no so much differences:

import dv0

res = dv0.Open('10.0.0.2',0,'pi','raspberry')

if (res == 0):

 print ("Connected to dv0_manager")

else:

 DisplayError(res)

4.6.3 API functions related to Header1

Functions SetDate and GateDate manage the real time clock of Header1 control unit

Function SetDate generic description

int SetDate(int Year, int Month, int Day, int Hour, int Minute, int Second)

Sets this date to the real time clock embedded in the Header1 board

Parameters:

Pre-condition : User must pass a valid range for each parameter and a valid global date.
Unpredicted behavior can occurs if an invalid date is entered.
Valid values: Year = 2000..2099; Month = 1..12; Day = 1..31; Hour = 0..23;
Minute = 0..59; Second = 0..59
Return values

Returns 0 if successful
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled

C++ Syntax

int SetDate(int Year, int Month, int Day, int Hour, int Minute, int Second);

Java Syntax

int SetDate(int Year, int Month, int Day, int Hour, int Minute, int Second);

Python Syntax

def SetDate(Year, Month, Day, Hour, Minute, Second):

DVO HEADER1

Header1-Page 33 ©2015 deValirian

Function GetDate generic description

int GetDate(int Year, int Month, int Day, int Hour, int Minute, int Second)

Fills parameters with the current real time clock kept by the Header1 board

Parameters:

Return values

Returns 0 if successful
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled

C++ Syntax

int GetDate(int &Year, int &Month, int &Day, int &Hour, int &Minute, int &Second);

Java Syntax

int GetDate(int Date[]);
whereas Date[0] = Year, Date[1] = Month, Date[2] = Day, Date[3] = Hour, Date[4] = Minute
and Date[5] = Second;

Python Syntax

def GetDate():
Returns a 2-elements tuple containing an array Date (as in Java) and an integer
(return value)
 return Date, Result

Function SetRestartTime generic description

int SetRestartTime(int Minutes)

Informs the Header1 board that the current restart time is "minutes", which overloads the
argument -restart_time given at the invocation of dv0_manager
Parameters:

Number of minutes
Return values

Returns 0 if successful
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled

C++ Syntax

int SetRestartTime(int Minutes);

Java Syntax

int SetRestartTime(int Minutes);

Python Syntax

def SetRestartTime(Minutes):

Function PowerOff description

int PowerOff()

Tells the Header1 board to initiate a shutdown process as if it was initiated by the
pushbutton or power failure
Parameters:

Return values

DVO HEADER1

Header1-Page 34 ©2015 deValirian

Returns 0 if successful
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled

C++ Syntax

int PowerOff ();

Java Syntax

int PowerOff ();

Python Syntax

def PowerOff ():

Function ResetWatchDog description

int ResetWatchDog ()

Tells the Header1 board to reset the watchdog timer, if it was activated by the parameter -
watch_dog <seconds> of dv0_manager.
Parameters:

Return values

Returns 0 if successful
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled

C++ Syntax

int ResetWatchDog ();

Java Syntax

int ResetWatchDog ();

Python Syntax

def ResetWatchDog ():

Function GetHeaderInfo description

int GetHeaderInfo (Info[8])

Fills the array Info with information from the Header1 control unit.
Parameters:

The meaning of each occurrence of the array Info is
Info[0] = Header1 version number
Info[1] = Voltage at Wall input (in tenths of volts)
Info[2] = Voltage at Battery input (in tenths of volts)
Info[3] = Number of DV0 transmission errors detected
Info[4] = Number of DV0 Input/Output boards that have been detected
Info[5] = Percent of Header1 control unit’s memory used
Info[6] = Unused
Info[7] = Unused

Return values

Returns 0 if successful
DV_NOT_CONNECTED if previous Open call had failed or connection has been canceled

C++ Syntax

int GetHeaderInfo (unsigned char Info[8]);

Java Syntax

DVO HEADER1

Header1-Page 35 ©2015 deValirian

int GetHeaderInfo (byte Info[8]);

Python Syntax

def GetHeaderInfo ():
Returns a 2-elements tuple containing an array Info (as in C++ or java) and an integer
(return value)
 return Date, Result

4.6.4 API examples

In this section, a complete example of how to manage Header1 related functions are described both in C++ and

Python languages. Java example is omitted because it is so close to C++ that only adds confusion. However, there is

an example of how to program an Android APP with the DV0 API, that is not included in this section for the benefit of

simplicity but it can be found at www.devalirian.com, inside the Technical Information section.

4.6.4.1. C++ ExampleHeader1.cpp

#include <iostream>
using namespace std;
#include "DV0.h"

char *ServAddress = NULL; char *LoginName = NULL; char *Password = NULL; int Port = 0;
DV0 dv0;

void DisplayError(int r);
int DoTest(void);
int SetDate();

int main() {
 int r;
 // Trying to connect
 r = dv0.Open(ServAddress, Port, LoginName, Password);
 if (r == 0) {
 cout << "Connection to dv0_manager successful " << endl;
 r = DoTest();
 if (r != 0) DisplayError(r);
 } else DisplayError(r);
 return r;
}

int DoTest(void) {
 int option, r, y, m, d, h, min, sec;
 // Print menu
 cout << "Menu:" << endl;
 cout << "1-SetDate 2-GetDate 3-SetRestartTime 4-PowerOff" << endl;
 cout << "5-ResetWatchDog 6-GetHeaderInfo" << endl;
 // Get user option
 cin >> option;
 // And execute
 switch (option) {
 case 1:
 //--Set Date
 return SetDate();
 case 2:
 //--Get Date
 r = dv0.GetDate(y,m,d,h,min,sec);
 if (r == 0) {
 cout << "Date is "<< y <<"/"<< m <<"/"<< d

<<" "<< h <<":"<< min <<":"<< sec << endl;

http://www.devalirian.com/

DVO HEADER1

Header1-Page 36 ©2015 deValirian

 }
 return r;
 case 3:
 //---SetRestartTime
 cout << "Restart time (minutes):" << endl; cin >> min;
 return dv0.SetRestartTime(min);
 case 4:
 //---PowerOff
 return dv0.PowerOff();
 case 5:
 //---ResetWatchDog
 return dv0.ResetWatchDog();
 case 6:
 //---GetHeaderInfo
 unsigned char Info[8];
 r = dv0.GetHeaderInfo(Info);
 if (r == 0) {
 cout << "Version: " << (int)Info[0] << endl;
 cout << "VIn : " << (float)Info[1]/10.0 << endl;
 cout << "VBat : " << (float)Info[2]/10.0 << endl;
 cout << "CRC err: " << (int)Info[3] << endl;
 cout << "Boards : " << (int)Info[4] << endl;
 cout << "Mem % : " << (int)Info[5] << endl;
 }
 return r;
 }
 cout << "Invalid option" << endl;
 return 0;
}

int SetDate() {
// This function gets the current system time and sends it to the Header1 control unit
 time_t t = time(NULL);
 struct tm tm = *localtime(&t);
 return dv0.SetDate(tm.tm_year+1900,tm.tm_mon+1,

tm.tm_mday,tm.tm_hour,tm.tm_min,tm.tm_sec);
}

void DisplayError(int error) {
 switch (error) {
 case DV_NOT_CONNECTION:

cout << "dv0_manager does not respond. Check IpAddress and Port" << endl;
break;

 case DV_INVALID_LOGIN:
cout << "dv0_manager refuses login or password" << endl;
break;

 case DV_NOT_CONNECTED:
cout << "DVO header board is not connected" << endl;
break;

 case DV_INVALID_BOARD:
cout << "Invalid board address" << endl;
break;

 case DV_NOT_SUPPORTED:
cout << "Invalid peripheral" << endl;
break;

 default:
cout << "Unexpected error code" << endl;
break;

 }
}

DVO HEADER1

Header1-Page 37 ©2015 deValirian

4.6.4.2. Python ExampleHeader1.py

import sys

import dv0

def DisplayError(error):

 if error == 0:

 return

 if error == dv0.DV_NOT_CONNECTION:

 print ("dv0_manager does not respond. Check IpAddress and Port")

 elif error == dv0.DV_INVALID_LOGIN:

 print ("dv0_manager refuses login or password")

 elif error == dv0.DV_NOT_CONNECTED:

 print ("DVO header board is not connected")

 elif error == dv0.DV_INVALID_BOARD:

 print ("Invalid board address")

 elif error == dv0.DV_NOT_SUPPORTED:

 print ("Invalid peripheral")

 else:

 print ("Unexpected error code: ", error)

Assuming that the Raspberry is not this computer and connected as 10.0.0.2

Also, dv0_manager is called like "dv0_manager -ip_address 10.0.0.2 -login pi"

res = dv0.Open('10.0.0.2', 0, 'pi', 'raspberry')

Assuming that the Raspberry is this computer

and dv0_manager is called just like "dv0_manager"

res = dv0.Open('',0,'','');

looping = True

if (res == 0):

 print ("Connected to dv0_manager")

else:

 DisplayError(res)

 looping = False

while looping:

 print ("1-SetDate 2-GetDate 3-SetRestartTime 4-PowerOff")

 print ("5-ResetWatchDog 6-GetHeaderInfo")

 option = int(input("Enter option:"))

 if option == 1:

 # --- Set Date example

 year = int(input ("Enter year :"))

 month = int(input ("Enter month:"))

 day = int(input ("Enter day :"))

 hour = int(input ("Enter hour :"))

 minute = int(input ("Enter minute :"))

 second = int(input ("Enter second :"))

 res = dv0.SetDate(year, month, day, hour, minute, second)

 DisplayError(res)

 elif option == 2:

 # --- Get Date example

 Date,res = dv0.GetDate()

 if res == 0:

 print("Year:", Date[0], " Month:", Date[1], " Day:", Date[2],

" Hour:", Date[3], " Minute:", Date[4], "Second: ", Date[5])

 else:

 DisplayError(res)

 elif option == 3:

 # --- Set restart time example

DVO HEADER1

Header1-Page 38 ©2015 deValirian

 minutes = int(input ("Enter restart time in minutes:"))

 res = dv0.SetRestartTime(minutes)

 DisplayError(res)

 elif option == 4:

 # --- Power Off example

 res = dv0.PowerOff()

 DisplayError(res)

 elif option == 5:

 # --- Reset Watch Dog example

 res = dv0.ResetWatchDog()

 DisplayError(res)

 elif option == 6:

 # --- Get Header1 or HeaderUSB example

 Info, res = dv0.GetHeaderInfo()

 if (res == dv0.DV0_OK):

 print ("Version: %d", Info[0]);

 print ("VIn : %d", Info[1]/10);

 print ("VBat : %d", Info[2]/10);

 print ("CRC err: %d", Info[3]);

 print ("Boards : %d", Info[4]);

 print ("Mem % : %d", Info[5]);

 else:

 DisplayError(res)

DVO HEADER1

Header1-Page 39 ©2015 deValirian

5. MECHANICAL DRAWINGS

Hole dimensions (top view) Board dimensions (top view)

Connector dimensions (front view)

Connector dimensions (left view)

DVO HEADER1

Header1-Page 40 ©2015 deValirian

6. ACCESSORIES

The Header1 control board comes with the following accessories:

 One DV0 socket. Model 20020004-D041B01LF

 Two Spaces (M3, 12mm). Model SP1112

 Four bakelite washers. Model AB14

 Two M3 x 6mm screw. Model M3X6EE

 Two M3 nut. Model TRM3

The spacers, washers, nuts and screws are intended to assembly the Header1 control board to the Rapberry Pi

board as shown in the following picture

DVO HEADER1

Header1-Page 41 ©2015 deValirian

IMPORTANT NOTICE

Information contained in this publication regarding device applications and the like is provided only for your convenience and may

be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

deValirian MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN

OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS

CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.

deValirian disclaims all liability arising from this information and its use. Use of deValirian devices in life support and/or safety

applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless deValirian from any and all

damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any

deValirian intellectual property rights.

Header1 board is not designed to be radiation tolerant

Please be sure to implement in your equipment using the safety measures to guard against the possibility of physical injury, file or

any other damaged cause in event of the failure of Header1 board. deValirian shall bear no responsibility whatsoever for you’re your

use of Header1 board outside the prescribed scope or not in accordance with this manual.

Reproduction of significant portions of deValirian information in deValirian data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. deValirian is

not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Web Site: www.devalirian.com

Mail info: info@devalirian.com

http://www.devalirian.com/
mailto:info@devalirian.com

	1. Functional overwiew
	1.1 Uninterruptible power supply.
	1.1.1 Wall Mode vs. Battery Mode
	1.1.2 Power Off Conditions
	1.1.3 Power Off Process
	1.1.4 Power On Conditions
	1.1.5 Power On Process
	1.1.6 On State features
	1.1.7 Real time clock

	1.2 Managing DVO IO expansion boards
	1.2.1 Discovery process

	2. Electrical characteristics
	2.1 Identifying connectors
	2.1.1 Wall input
	2.1.2 Battery charge resistor
	2.1.3 Battery input
	2.1.4 On/Off Pushbutton
	2.1.5 DV0 Bus connector

	2.2 Absolute maximum ratings
	2.3 Power Consumption
	2.3.1 Wall input consumption
	2.3.2 Battery input consumption
	2.3.3 Power calculation examples

	2.4 DVO Bus length
	2.4.1 Data transmission degrading
	2.4.2 Voltage drop

	3. Battery dimensioning
	3.1 Battery considerations
	3.1.1 Battery chemistry
	3.1.2 Battery capacity
	3.1.3 Internal resistance

	3.2 Wall Mode
	3.2.1 Battery capacity calculation procedure
	3.2.2 Battery charge calculation procedure

	3.3 Battery mode
	3.3.1 Battery capacity calculation procedure
	3.3.2 Battery charge calculation procedure

	3.4 Battery dimensioning examples
	3.4.1 Wall mode calculations example
	3.4.2 Battery mode calculations examples.

	4. Software
	4.1 Architecture description
	4.2 dv0_manager installation
	4.2.1 dv0_manager return values
	4.2.2 Unblocking ttyAMA0

	4.3 dv0_manager command line parameters
	4.3.1 Parameter -serial_port <port>
	4.3.2 Parameter -port <port number>
	4.3.3 Parameter -ip_address <ip_address>
	4.3.4 Parameter -login <login name>
	4.3.5 Parameter -shutdown_command “<command>”
	4.3.6 Parameter -shutdown_time <seconds>
	4.3.7 Parameter -boot_time <seconds>
	4.3.8 Parameter -restart_time <minutes>
	4.3.9 Parameter -min_voltage <voltage>
	4.3.10 Parameter -cut_vbus
	4.3.11 Parameter -no_push_active
	4.3.12 Parameter -force_date
	4.3.13 Parameter -start_up_time dd:hh:mm
	4.3.14 Parameter -watch_dog <seconds>

	4.4 dv0_test command line parameters
	4.4.1 Parameter -ip_address <ip address>
	4.4.2 Parameter -port <Port number>
	4.4.3 Parameter -login <login name>
	4.4.4 Parameter -password <password>
	4.4.5 Parameter -set_date
	4.4.6 Parameter -set_restart_time <minutes>
	4.4.7 Parameter -power_off
	4.4.8 Parameter -get_manifest <address>
	4.4.9 Parameter -watch_dog_reset
	4.4.10 Return values of dv0_test

	4.5 Examples of dv0_manager, dv0_test and Linux scripts
	4.6 DV0 API
	4.6.1 Creating an instance of DV0 class
	4.6.2 Connecting to dv0_manager
	4.6.3 API functions related to Header1
	4.6.4 API examples

	5. Mechanical drawings
	6. Accessories
	Important notice

