
Kappa4310Rasp User Manual

1/14 ISDOC131B, Revised June 2025
 Submit Feedback

Kappa4310Rasp
IS4310 Hat for Raspberry Pi

Presentation
The Kappa4310Rasp is an evaluation board for the IS4310 Modbus RTU Slave stack chip. It enables engineers

to easily evaluate the IS4310 without the need for soldering or developing their own prototype—offering a ready-

to-use solution. The board features an RGB LED and a pushbutton to simulate an actuator and a sensor.

Designed as a hat with the Raspberry Pi form factor, the Kappa4310Rasp benefits from its widespread popularity,

ensuring compatibility with various single board computer (SBC) boards.

The board features an RS485 electrical interface and includes two daisy-chained RJ45 connectors for

seamless integration.

The IS4310 is an ideal solution for ensuring Modbus protocol timing constraints, reducing CPU load, and

eliminating the need for dedicated pins. It includes 500 Holding Registers for engineers to use and supports

Function Codes 3 (0x03), 6 (0x06), and 16 (0x10).

Hat Characteristics

Modbus Characteristics

Supported Function Codes: 3 (0x03) - Read Holding Registers
6 (0x06) - Write Single Register
16 (0x10) - Write Multiple Registers

Holding Registers: 500

Operating Mode: RTU

Electrical Interface: RS485

Default Modbus Configuration: 19200

Electrical Characteristics

Board Voltage 3.3 V

I2C Compatible Voltage Levels 3.3 V and 5 V

Kappa4310Rasp User Manual

2/14 ISDOC131B, Revised June 2025
 Submit Feedback

Product Selection Guide

 Part Number
Form

Factor
Physical

Layer
Stack Description

O
n

ly
 S

ta
c

k

IS
4
3

1
0
-S

8

SO8N
UART
3.3V

Modbu
s RTU
Server

Modbus RTU Slave Stack Chip.

S
ta

c
k

 w
it

h
 P

h
y

s
ic

a
l
L

a
y

e
r IS

4
3

1
0

-4
8
5
M

2

Castellated
Holes
Module

RS485
Modbus
RTU
Server

IS4310 with RS485 Transceiver.

Industrial communications.

IS
4
3

1
0
-I

S
O

4
8

5
M

6

Castellated
Holes
Module

Isolated
RS485

Modbus
RTU
Server

IS4310 with Isolated RS485
Transceiver.

The isolation offers more robust
communications and longer RS485
bus distances.

IS
4
3

1
0
-2

3
2
M

4

Castellated
Holes
Module

RS232
Modbus
RTU
Server

IS4310 with RS232 Transceiver.

E
v
a
lu

a
ti

o
n

 B
o

a
rd

s

K
a
p

p
a
4
3

1
0
R

a
s
p

Raspberry Pi
Compatible

RS485
Modbus
RTU
Server

IS4310 Evaluation Board with
RS485 Transceiver.

Compatible with Raspberry Pi.

K
a
p

p
a
4
3

1
0

A
rd

Arduino
Compatible

RS485
Modbus
RTU
Server

IS4310 Evaluation Board with
RS485 Transceiver.

Compatible with Arduino/Nucleo.

Kappa4310Rasp User Manual

3/14 ISDOC131B, Revised June 2025
 Submit Feedback

1. Description

1.1. General Description

The core of the Kappa4310Rasp Modbus Hat is the IS4310 I2C Modbus RTU Slave stack chip, which is connected

to an RS485 transceiver. This transceiver interfaces with the daisy-chained RJ45 connectors. Since the connectors

are daisy-chained, they are functionally identical—connecting the Modbus master to either one makes no

difference.

The IS4310 I2C-Serial Interface connects to the I2C pins of the hat. The hat includes a solder-jumper for the SCL

and SDA lines that allows the activation of the I2C pull-up voltage (3.3 V). If not soldered, the I2C lines will stay

floating. The Floating option is useful when the pull-up resistors are located outside the Kappa4310Rasp.

It is crucial to ensure that pull-up resistors are present either on the hat or elsewhere in the circuit. Without pull-up

resistors, the I2C-Serial Interface will not function.

Since the IS4310 is 5V tolerant, it can operate with I2C pull-up voltages of 5V and with transceivers powered at

5V. Using 5V transceivers provides better noise immunity and allows for longer bus distances.

The Hat has 3 LEDs. The Rx yellow LED will blink on received data, and Tx yellow LED will blink on the IS4310

answer. The Power green LED will indicate that the board has detected power. Please note that the board requires

both 3.3V and 5V to operate.

A push button is placed on the board to provide an easy way to simulate a sensor. By reading its state and storing

it in a Holding Register, you can monitor changes in real time from the Modbus Master as you press the button.

The push button is pulled up by default, and pressing it brings the line to a low state. It is connected to GPIO7 (pin

26).

To simulate an actuator, an RGB LED is placed on the board to reflect the state of Modbus Holding Registers.

For example, you can create a traffic light simulation by writing a program that reads values from three Holding

Registers and adjusts the PWM of each LED accordingly.

The RGB LED is connected to GPIOs 12 (pin 32), 13 (pin 33), and 19 (pin 35), respectively. These GPIOs support

PWM, allowing the display of analog values.

Kappa4310Rasp User Manual

4/14 ISDOC131B, Revised June 2025
 Submit Feedback

Kappa4310Rasp User Manual

5/14 ISDOC131B, Revised June 2025
 Submit Feedback

1.2. Module Pinout

Name (Pin
Number)

Type Description

NC
Not
Connected

These pins have no electrical connection.
They can be used by other hats or by your own proposal.

3.3V 3.3V Power In The hat needs 3.3V to operate.

GND Ground

Ground reference.
GND is connected to the “Common” of the RS485 bus.
GND is NOT connected to the shield of the RJ45 connector. Refer to section “Bus
Topology” for more details.

Push-Button
(26)

Analog User push-button for prototyping proposals. Default state is high.

SCL (5)
SDA (4)

Open Drain

SCL and SDA pins of the IS4310 I2C-Serial Interface.
Ensure the pull-up solder jumpers are properly configured:

• Placing solder on the SDA and SCL jumpers sets the SCL and SDA pull-up voltage

to 3.3V.

• Removing the solder from the solder jumpers leaves SCL and SDA floating. This
option is useful when pull-up resistors are located elsewhere in the circuit.

Note 1: Both solder jumpers must either have solder or not have solder. You cannot
leave one with solder and the other without.

Note 2: Solder can be easily removed with solder wick and flux.

RGB.Red (32) Red LED

User RGB LED for prototyping proposals. RGB.Green (33) Green LED

RGB.Blue (35) Blue LED

Kappa4310Rasp User Manual

6/14 ISDOC131B, Revised June 2025
 Submit Feedback

1.3. RJ45 Connectors

Typical Modbus Serial Line connectors include Screw Terminals, RJ45, and D-Sub 9-pin (commonly known as

DB9), among others. The device-side connector must be female, while the cable-side connector must be male.

When selecting a RJ45 cable, ensure its shield and make sure to connect the cable shield to the connector shield

to ensure proper electrical continuity across all cable shield on the bus.

Do not connect the shield to the Common. All cable shields should be connected to Common and Protective Ground

at a single point for the entire bus, ideally at the master device.

Optionally, power can be supplied to your system through the pin 7 of the RJ45 connector.

RJ45 Connector for RS485 Modbus

1: NC

2: NC

3: NC

4: B (D1)

5: A (D0)

6: NC

7: Bus Power Supply (optional)

8: Common

Hat: Cable Shield

Attention!
The RJ45 connector is intended for the Modbus RS485 bus and
must not be connected to an Ethernet network. Connecting it to an
Ethernet network may cause damage to Ethernet devices or this
device.

Kappa4310Rasp User Manual

7/14 ISDOC131B, Revised June 2025
 Submit Feedback

2. Bus Recommendations

2.1. Bus Topology

In an RS485 setup without a repeater, a single trunk cable runs through the system, with devices connected in a

daisy-chain manner. Short cables derivations (stubs) are also allowed but not recommended. Keep the derivation

distance as short as possible. Other topologies are not allowed.

Kappa4310Rasp User Manual

8/14 ISDOC131B, Revised June 2025
 Submit Feedback

2.2. Cable Wiring

Kappa4310Rasp User Manual

9/14 ISDOC131B, Revised June 2025
 Submit Feedback

3. Raspberry Pi Example

IS4310 Modbus Code Example for Raspberry Pi

--

This Python script communicates with the IS4310 Modbus RTU chip via I²C using a Raspberry

Pi.

It demonstrates how to read a push button (simulating a sensor) and store its value in

Holding Register 0.

It also controls an RGB LED (simulating an actuator) using PWM pins 12, 13, and 19, based on

the values in Holding Registers 1, 2, and 3.

A value of 0 turns off the LEDs, and a value of 100 sets them to maximum brightness.

You can test this code using the **Kappa4310Rasp Evaluation Board**.

Buy it at: www.inacks.com/kappa4310rasp

Download the IS4310 datasheet at: www.inacks.com/is4310

from smbus2 import SMBus, i2c_msg

import RPi.GPIO as GPIO

import time

I2C_BUS = 1 # I2C bus number on Raspberry Pi (usually 1)

DEVICE_ADDRESS = 0x11 # 7-bit I2C address of the IS4310 Modbus RTU chip

GPIO.setmode(GPIO.BCM) # Use BCM pin numbering scheme

Define GPIO pins for three LEDs and push button

led_pin1 = 12

led_pin2 = 13

led_pin3 = 19

push_button_pin = 26

Setup push button pin as input with internal pull-down resistor enabled

GPIO.setup(push_button_pin, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

Setup LED pins as outputs

GPIO.setup(led_pin1, GPIO.OUT)

GPIO.setup(led_pin2, GPIO.OUT)

GPIO.setup(led_pin3, GPIO.OUT)

Initialize PWM on LED pins at 1 kHz frequency

pwm1 = GPIO.PWM(led_pin1, 1000)

pwm2 = GPIO.PWM(led_pin2, 1000)

pwm3 = GPIO.PWM(led_pin3, 1000)

Start PWM with 0% duty cycle (LEDs off initially)

pwm1.start(0)

pwm2.start(0)

pwm3.start(0)

def write_register(register, data):

 """

 Write a 16-bit data value to a 16-bit register address on the I2C device.

 :param register: 16-bit register address (split into high and low bytes)

 :param data: 16-bit data to write (split into high and low bytes)

 """

 high_addr = (register >> 8) & 0xFF # Extract high byte of register address

 low_addr = register & 0xFF # Extract low byte of register address

 data_high = (data >> 8) & 0xFF # Extract high byte of data

 data_low = data & 0xFF # Extract low byte of data

 # Open I2C bus, send write message: [register high, register low, data high, data low]

 with SMBus(I2C_BUS) as bus:

 msg = i2c_msg.write(DEVICE_ADDRESS, [high_addr, low_addr, data_high, data_low])

 bus.i2c_rdwr(msg)

def read_register(start_register):

 """

 Read a 16-bit value from a 16-bit register address on the I2C device.

 :param start_register: 16-bit register address to read from

 :return: 16-bit integer value read (big-endian)

 """

 high_addr = (start_register >> 8) & 0xFF # High byte of register address

 low_addr = start_register & 0xFF # Low byte of register address

Kappa4310Rasp User Manual

10/14 ISDOC131B, Revised June 2025
 Submit Feedback

 with SMBus(I2C_BUS) as bus:

 # Write register address first to set internal pointer

 write_msg = i2c_msg.write(DEVICE_ADDRESS, [high_addr, low_addr])

 # Prepare to read 2 bytes from the device

 read_msg = i2c_msg.read(DEVICE_ADDRESS, 2)

 bus.i2c_rdwr(write_msg, read_msg)

 data = list(read_msg) # Read bytes as list of ints

 # Combine high and low bytes into 16-bit integer (big-endian)

 value = (data[0] << 8) | data[1]

 return value

try:

 while True:

 # Read push button state (0 or 1)

 button_value = GPIO.input(push_button_pin)

 # Write button state to register 0 of the device

 write_register(0, button_value)

 # Read PWM values from registers 1, 2, and 3

 pwm_val1 = read_register(1)

 pwm_val2 = read_register(2)

 pwm_val3 = read_register(3)

 # Cap PWM values at max 100 to avoid invalid duty cycles

 if pwm_val1 > 100:

 pwm_val1 = 100

 if pwm_val2 > 100:

 pwm_val2 = 100

 if pwm_val3 > 100:

 pwm_val3 = 100

 # Calculate duty cycles by inverting the PWM value (100 - value)

 # abs() used to ensure positive duty cycle, just in case

 duty1 = abs(pwm_val1 - 100)

 duty2 = abs(pwm_val2 - 100)

 duty3 = abs(pwm_val3 - 100)

 # Print duty cycle values for debugging (tab-separated)

 print(f"{duty1}\t{duty2}\t{duty3}")

 # Update PWM duty cycles to control LED brightness

 pwm1.ChangeDutyCycle(duty1)

 pwm2.ChangeDutyCycle(duty2)

 pwm3.ChangeDutyCycle(duty3)

 # Small delay to avoid excessive CPU load

 time.sleep(0.05)

except KeyboardInterrupt:

 # Gracefully handle Ctrl+C exit

 print("Exiting...")

finally:

 # Stop all PWM signals and cleanup GPIO pins on exit

 pwm1.stop()

 pwm2.stop()

 pwm3.stop()

 GPIO.cleanup()

Kappa4310Rasp User Manual

11/14 ISDOC131B, Revised June 2025
 Submit Feedback

4. Schematic

Kappa4310Rasp User Manual

12/14 ISDOC131B, Revised June 2025
 Submit Feedback

Content

Presentation ... 1

Product Selection Guide .. 2

1. Description ... 3

1.1. General Description 3

1.2. Module Pinout .. 5

1.3. RJ45 Connectors ... 6

2. Bus Recommendations 7

2.1. Bus Topology ... 7

2.2. Cable Wiring .. 8

3. Schematic ... 11

Content ... 12

Appendix .. 13

Revision History .. 13

Documentation Feedback 13

Sales Contact .. 13

Customization ... 13

Independence and Trademarks Notice 13

Disclaimer ... 14

Kappa4310Rasp User Manual

13/14 ISDOC131B, Revised June 2025
 Submit Feedback

Appendix

Revision History

Document Revision

Date Revision Code Description

June 2025 ISDOC131B Added Python example for Raspberry Pi

June 2025 ISDOC131A Initial Release

Hat Revision

Date Revision Code Description

June 2025 ISB3027r2 Initial Release

Documentation Feedback

Feedback and error reporting on this document are very much appreciated.

Sales Contact

For special order requirements, large volume orders, or scheduled orders, please contact our sales department at:

Customization

INACKS can develop new products or customize existing ones to meet specific client needs. Please contact our

engineering department at:

Independence and Trademarks Notice

This company and the products provided herein are developed independently and are not affiliated with, endorsed

by, or associated with any official protocol or standardization entity.

All trademarks, names, and references to specific protocols remain the property of their respective owners.

Kappa4310Rasp User Manual

14/14 ISDOC131B, Revised June 2025
 Submit Feedback

Disclaimer
Limited warranty and liability — Information in this document is

believed to be accurate and reliable. However, INACKS does not

give any representations or warranties, expressed or implied, as to

the accuracy or completeness of such information and shall have no

liability for the consequences of use of such information. INACKS

takes no responsibility for the content in this document if provided

by an information source outside of INACKS.

In no event shall INACKS be liable for any indirect, incidental,

punitive, special or consequential damages (including - without

limitation - lost profits, lost savings, business interruption, costs

related to the removal or replacement of any products or rework

charges) whether or not such damages are based on tort (including

negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any

reason whatsoever, INACKS’s aggregate and cumulative liability

towards customer for the products described herein shall be limited

in accordance with the Terms and conditions of commercial sale of

INACKS.

Right to make changes — INACKS reserves the right to make

changes to information published in this document, including without

limitation specifications and product descriptions, at any time and

without notice. This document supersedes and replaces all

information supplied prior to the publication hereof.

Suitability for use — INACKS products are not designed, authorized

or warranted to be suitable for use in life support, life-critical or

safety-critical systems or equipment, nor in applications where

failure or malfunction of an INACKS product can reasonably be

expected to result in personal injury, death or severe property or

environmental damage. INACKS and its suppliers accept no liability

for inclusion and/or use of INACKS products in such equipment or

applications and therefore such inclusion and/or use is at the

customer’s own risk.

Quick reference data — The Quick reference data is an extract of

the product data given in the Limiting values and Characteristics

sections of this document, and as such is not complete, exhaustive

or legally binding.

Applications — Applications that are described herein for any of

these products are for illustrative purposes only. INACKS makes no

representation or warranty that such applications will be suitable for

the specified use without further testing or modification.

Customers are responsible for the design and operation of their

applications and products using INACKS products, and INACKS

accepts no liability for any assistance with applications or customer

product design. It is customer’s sole responsibility to determine

whether the INACKS product is suitable and fit for the customer’s

applications and products planned, as well as for the planned

application and use of customer’s third party customer(s).

Customers should provide appropriate design and operating

safeguards to minimize the risks associated with their applications

and products.

INACKS does not accept any liability related to any default, damage,

costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by

customer’s third party customer(s). Customer is responsible for

doing all necessary testing for the customer’s applications and

products using INACKS products in order to avoid a default of the

applications and the products or of the application or use by

customer’s third party customer(s). INACKS does not accept any

liability in this respect.

Limiting values — Stress above one or more limiting values (as

defined in the Absolute Maximum Ratings System of IEC 60134) will

cause permanent damage to the device. Limiting values are stress

ratings only and (proper) operation of the device at these or any

other conditions above those given in the Recommended operating

conditions section (if present) or the Characteristics sections of this

document is not warranted. Constant or repeated exposure to

limiting values will permanently and irreversibly affect the quality

and reliability of the device.

Terms and conditions of commercial sale — INACKS products are

sold subject to the general terms and conditions of commercial sale,

as published at http://www.inacks.com/comercialsaleterms, unless

otherwise agreed in a valid written individual agreement. In case an

individual agreement is concluded only the terms and conditions of

the respective agreement shall apply. INACKS hereby expressly

objects to applying the customer’s general terms and conditions with

regard to the purchase of INACKS products by customer.

No offer to sell or license — Nothing in this document may be

interpreted or construed as an offer to sell products that is open for

acceptance or the grant, conveyance or implication of any license

under any copyrights, patents or other industrial or intellectual

property rights.

Export control — This document as well as the item(s) described

herein may be subject to export control regulations. Export might

require a prior authorization from competent authorities.

Non-automotive qualified products — This INACKS product is not

suitable for automotive use. It is neither qualified nor tested in

accordance with automotive testing or application requirements.

INACKS accepts no liability for inclusion and/or use of non-

automotive qualified products in automotive equipment or

applications.

Protocol Guidance Disclaimer: The information provided herein

regarding the protocol is intended for guidance purposes only. While

INACKS strive to provide accurate and up-to-date information, this

content should not be considered a substitute for official protocol

documentation. It is the responsibility of the client to consult and

adhere to the official protocol documentation when designing or

implementing systems based on this protocol.

INACKS make no representations or warranties, either expressed

or implied, as to the accuracy, completeness, or reliability of the

information contained in this document. INACKS shall not be held

liable for any errors, omissions, or inaccuracies in the information or

for any user’s reliance on the information.

The client is solely responsible for verifying the suitability and

compliance of the provided information with the official protocol

standards and for ensuring that their implementation or usage of the

protocol meets all required specifications and regulations. Any

reliance on the information provided is strictly at the user’s own risk.

Certification and Compliance Disclaimer: Please be advised that the

product described herein has not been certified by any competent

authority or organization responsible for protocol standards.

INACKS do not guarantee that the chip meets any specific protocol

compliance or certification standards.

It is the responsibility of the client to ensure that the final product

incorporating this product is tested and certified according to the

relevant protocol standards before use or commercialization. The

certification process may result in the product passing or failing to

meet these standards, and the outcome of such certification tests is

beyond our control.

INACKS disclaim any liability for non-compliance with protocol

standards and certification failures. The client acknowledges and

agrees that they bear sole responsibility for any legal, compliance,

or technical issues that arise due to the use of this product in their

products, including but not limited to the acquisition of necessary

protocol certifications.

	Presentation
	Product Selection Guide
	1. Description
	1.1. General Description
	1.2. Module Pinout
	1.3. RJ45 Connectors

	2. Bus Recommendations
	2.1. Bus Topology
	2.2. Cable Wiring

	3. Raspberry Pi Example
	4. Schematic
	Content
	Appendix
	Revision History
	Documentation Feedback
	Sales Contact
	Customization
	Independence and Trademarks Notice
	Disclaimer

