
Page 1 of 18

Spec. Rev. 3.0C

OctoQuad FTC Edition Specification

Spec. Rev. 3.0C – 3/5/2025

Page 2 of 18

Spec. Rev. 3.0C

Table of Contents

Table of Contents .. 2

1 Introduction .. 4

1.1 Overview .. 4

1.2 Board Versions ... 4

1.3 Description... 4

1.4 Supported Firmware Version .. 4

2 Electrical Specifications ... 5

2.1 Logic Level.. 5

2.2 Power ... 5

2.3 Quadrature signal input ... 5

2.4 Pulse width signal input ... 5

2.5 ESD Protection ... 5

2.6 Onboard IMU ... 5

3 Pinouts .. 5

3.1 4-pin JST-PH Encoder Channel Connectors ... 5

3.2 4-pin JST-PH I2C Connector ... 6

4 LED Status indications ... 6

4.1 Overview .. 6

4.2 LED Patterns .. 6

5 Field-Upgradable Firmware .. 6

5.1 Obtaining firmware files .. 6

5.2 Flashing firmware .. 6

6 I2C Interface .. 7

6.1 Overview .. 7

6.2 I2C Wedged Bus Recovery ... 7

6.3 Register access ... 7

6.4 Register Map.. 7

6.5 Register descriptions ... 8

7 Commands .. 10

7.1 Description... 10

7.2 Command List .. 10

Page 3 of 18

Spec. Rev. 3.0C

8 Parameters .. 12

8.1 Description... 12

8.2 Parameter List.. 12

8.3 Setting Parameters .. 12

8.4 Reading Parameters .. 13

8.5 Parameter Descriptions ... 13

9 Absolute Localizer ... 16

9.1 Overview .. 16

9.2 Robot Mounting Options (Automatic Gravity Detection) ... 16

9.3 Sign Conventions ... 16

9.4 Required Parameters for Use .. 16

10 CRC16 Calculation .. 17

10.1 Algorithm ... 17

10.2 Sample CRC Calculation Code .. 17

Page 4 of 18

Spec. Rev. 3.0C

1 Introduction

1.1 Overview
This document describes the operation of the OctoQuad FTC Edition module and the

programming interface.

1.2 Board Versions
Both the OctoQuad FTC Edition MK1 and MK2 support 8 quadrature / PWM encoder inputs.

However, the MK2 board also has an onboard IMU and absolute localizer for use with passive

tracking wheels (A.K.A deadwheel odometry pods).

If you are not sure which model you have, check the text on the backside of the PCB, to the left

side of the octopus. It will either say “FTC Edition MK1” or “FTC Edition MK2”.

Note that the MK1 shipped with firmware v2, while the MK2 ships with firmware v3. The MK1

boards can be upgraded to firmware v3, but the MK2 boards cannot be downgraded to firmware

v2.

1.3 Description
The OctoQuad provides a means to read up to eight quadrature encoders or pulse width signals

on the REV Robotics Expansion Hub / Control Hub, where reading these signals from the DIO ports

is not possible. The MK2 hardware revision features an onboard IMU and an absolute localizer

subsystem (designed for use with passive tracking wheels) to help FTC robots navigate around the

playing field with high precision.

For quadrature encoders, counts are tracked using signed 32-bit integers, and the counts for each

encoder are individually resettable. Additionally, the velocity of each encoder is tracked using a

signed 16-bit integer which represents the delta counts during a user-configurable sampling

interval.

For pulse width measurement, pulse width is measured in microseconds with a maximum

duration of 65535μs. Velocity can be measured for pulse width absolute encoders, and is

measured as the change in microsecond pulse width during the user configurable sampling

interval and reported as a signed 16-bit integer. The velocity calculation requires user-specified

minimum and maximum pulse width values. On firmware v3 or later, absolute pulse with encoder

position can be “accumulated” to allow tracking the position across multiple revolutions.

The onboard absolute localizer uses inputs from two passive tracking wheels connected to the

OctoQuad along with the onboard IMU to track robot XY position and heading, XY velocity and

angular velocity, at 1.92KHz.

When bulk reading encoder data or localizer data, a CRC16 is available to verify that the data has

been received intact and not corrupted during transit, a common problem for I2C buses in

electrically noisy conditions such as an FTC robot.

1.4 Supported Firmware Version
This document supports firmware version 3.

Page 5 of 18

Spec. Rev. 3.0C

Tracking absolute pulse width encoder position across multiple rotations is not supported on

firmware versions prior to v3.

Note that the MK1 shipped with firmware v2, while the MK2 ships with firmware v3. The MK1

boards can be upgraded to firmware v3, but the MK2 boards cannot be downgraded to firmware

v2.

2 Electrical Specifications

2.1 Logic Level
The OctoQuad module uses 3.3v logic and power for I2C bus communications, as well as 3.3v

power and logic for quadrature encoder signals. The I2C and encoder connections are NOT 5v

tolerant!

2.2 Power
The OctoQuad FTC Edition requires external 3.3v power on the I2C header to power the encoder

bus and does not supporting powering the encoder bus via USB.

2.3 Quadrature signal input
The step rate should not exceed 1 million steps/sec on any individual port (higher rates may work,

but have not been tested). Note that the OctoQuad does NOT provide pull-up resistors for the

A/B quadrature channels.

2.4 Pulse width signal input
The OctoQuad can measure pulse width signals from 1μs to 65535μs

2.5 ESD Protection
The encoder channels and I2C lines are protected from ESD to +/- 30kV (air) on the OctoQuad FTC

Edition.

2.6 Onboard IMU
The onboard IMU is an STMicroelectronics LSM6DSV16X

3 Pinouts

3.1 4-pin JST-PH Encoder Channel Connectors
Each encoder channel connector provides power and A/B quadrature or pulse width input signal

connections.

PCB Pin Label Function

G Ground

3 3.3v power supply for encoder

A Quadrature channel A OR Pulse Width Input

B Quadrature channel B

Page 6 of 18

Spec. Rev. 3.0C

3.2 4-pin JST-PH I2C Connector
This connector provides connections to power the OctoQuad and exposes the I2C interface data

pins. It is pin-compatible with the I2C ports on the REV Robotics Control Hub / Expansion Hub.

PCB Pin Label Function

G Ground

3 3.3v power input

D I2C bus data line

C I2C bus clock line

4 LED Status indications

4.1 Overview
The status light on the OctoQuad is used to indicate various states of communication with an I2C

bus master.

4.2 LED Patterns

4.2.1 Looping sequence of one blink followed by a pause
Indicates that the OctoQuad is powered up and ready to accept communications.

4.2.2 Rapid flashing (7Hz)
Indicates that there is in-flight or recent communication on the bus

4.2.3 Slow flashing (1Hz)
Indicates that bus communication has occurred since power-up, but no recent communication

has occurred.

4.2.4 Very rapid flashing (10Hz)
Internal error; please contact Digital Chicken Labs support (digitalchickenlabs@gmail.com)

5 Field-Upgradable Firmware

5.1 Obtaining firmware files
From time to time, official firmware updates for the OctoQuad may be released. Firmware

binaries may be found at https://github.com/DigitalChickenLabs/OctoQuad. WARNING: Flashing

unofficial firmware may cause permanent damage to the OctoQuad, or to devices to which it is

connected. Important note: The MK2 hardware revision is ONLY compatible with firmware v3 or

newer. The MK1 hardware revision is compatible with firmware v2 or v3.

5.2 Flashing firmware
To flash a firmware image onto the OctoQuad, follow the procedure below:

1. Remove all power and data connections from the OctoQuad.

2. Press and hold the BOOTSEL button (‘B’ on resin printed case)

3. While holding BOOTSEL, connect the OctoQuad to a computer using the micro-USB port

https://github.com/DigitalChickenLabs/OctoQuad

Page 7 of 18

Spec. Rev. 3.0C

4. Wait until the emulated USB drive appears on the computer. The LED will remain off.

5. Drag-n-drop the firmware image onto the emulated USB drive

6. The OctoQuad will automatically flash the firmware and reboot. Flashing is complete

when the emulated USB drive disappears and the status LED begins blinking an interface

code.

6 I2C Interface

6.1 Overview
The OctoQuad supports operating as a slave on the standard I2C interface, using the register

model. Bus clock rates of up to 400KHz are supported. The OctoQuad’s I2C address is 0x30.

6.2 I2C Wedged Bus Recovery
The OctoQuad can be configured to attempt recovery of a stuck I2C bus in certain scenarios. See

section 8.5.2 for more details.

6.3 Register access
Some registers are read-only, some are write-only, and others are read/write, as indicated in the

register map. Writing to a read-only register will have no effect. Data read from a write-only

register is undefined.

6.4 Register Map

Address Type Access Contents
0x00 uint8_t R Chip ID (will read 0x51)

0x01 uint8_t R Firmware version (major)

0x02 uint8_t R Firmware version (minor)

0x03 uint8_t R Firmware version (engineering)

0x04 uint8_t W Command Register

0x05 uint8_t RW Command Data Register 0

0x06 uint8_t RW Command Data Register 1

0x07 uint8_t RW Command Data Register 2

0x08 uint8_t RW Command Data Register 3

0x09 uint8_t RW Command Data Register 4

0x0A uint8_t RW Command Data Register 5

0x0B uint8_t RW Command Data Register 6

0x0C uint8_t R Localizer Yaw Axis Auto-Detect Decision

0x0D uint8_t R Localizer Status

0x0E – 0x0F int16_t R Localizer X axis velocity (mm/s)

0x10 – 0x11 int16_t R Localizer Y axis velocity (mm/s)

0x12 – 0x13 int16_t R Localizer Heading Axis Velocity (rad/s * 600)

https://www.ti.com/lit/an/slva704/slva704.pdf

Page 8 of 18

Spec. Rev. 3.0C

0x14 – 0x15 int16_t RW Localizer X position (mm)

0x16 – 0x17 int16_t RW Localizer Y position (mm)

0x18 – 0x19 int16_t RW Localizer Heading (rad * 5000)

0x1A– 0x1B uint16_t R Localizer CRC16 (0x0D --> 0x19)

0x1C – 0x1F int32_t R Channel 0 data (quadrature count OR μs pulse width)

0x20 – 0x23 int32_t R Channel 1 data (quadrature count OR μs pulse width)

0x24 – 0x27 int32_t R Channel 2 data (quadrature count OR μs pulse width)

0x28 – 0x2B int32_t R Channel 3 data (quadrature count OR μs pulse width)

0x2C – 0x2F int32_t R Channel 4 data (quadrature count OR μs pulse width)

0x30 – 0x33 int32_t R Channel 5 data (quadrature count OR μs pulse width)

0x34 – 0x37 int32_t R Channel 6 data (quadrature count OR μs pulse width)

0x38 – 0x3B int32_t R Channel 7 data (quadrature count OR μs pulse width)

0x3C – 0x3D int16_t R Channel 0 velocity (counts per μs sampling interval)

0x3E – 0x3F int16_t R Channel 1 velocity (counts per μs sampling interval)

0x40 – 0x41 int16_t R Channel 2 velocity (counts per μs sampling interval)

0x42 – 0x43 int16_t R Channel 3 velocity (counts per μs sampling interval)

0x44 – 0x45 int16_t R Channel 4 velocity (counts per μs sampling interval)

0x46 – 0x47 int16_t R Channel 5 velocity (counts per μs sampling interval)

0x48 – 0x49 int16_t R Channel 6 velocity (counts per μs sampling interval)

0x4A – 0x4B int16_t R Channel 7 velocity (counts per μs sampling interval)

0x4C – 0x4D uint16_t R Encoder data CRC16 (0x0D --> 0x19)

6.5 Register descriptions

6.5.1 Chip ID register
This register will always read 0x51 and may be used to confirm a proper bus connection with

the OctoQuad.

6.5.2 Firmware version registers
The firmware version follows the scheme major.minor.engineering where each of three

numbers is obtained from the corresponding register. For instance, if the registers read {2, 3, 4}

then the firmware version is 2.3.4.

6.5.3 Command Register & Command Data Registers 0-6
The Command Register can be used to issue various commands to the OctoQuad, with up to 7

bytes of related data (to be written to the command operand registers). See the Commands

section.

6.5.4 Localizer Yaw Axis Auto-Detect Decision Register
Reports the axis orientation the absolute localizer chose based on gravity detection.

Page 9 of 18

Spec. Rev. 3.0C

Value Meaning

0 Undecided

1 X -axis

2 X-axis (inverted)

3 Y-axis

4 Y-axis (inverted)

5 Z-axis

6 Z-axis (inverted)

6.5.5 Localizer Status Register
Reports the status of the absolute localizer routine

Value Meaning

0 Invalid

1 Not Ready

2 Warming Up IMU

3 Calibrating IMU

4 Running Pose Integration

5 Faulted (IMU not detected)

6.5.6 Localizer X/Y Axis Velocity
Reports absolute axis velocity in mm/s, averaged over the configured localizer velocity sample

interval parameter. For example, if the sampling interval is 20ms, a new velocity reading will be

calculated 50 times per second.

6.5.7 Localizer Heading Axis Velocity
Reports angular velocity on the automatically chosen axis (indicated by the Localizer Yaw Axis

Auto-Detect Decision Register) in rad/s, scaled by a factor of 600. Perform a floating-point

division by 600 to obtain the value in rad/s.

6.5.8 Localizer X/Y Position
Reports the absolute position in the X axis in mm. Writing to these registers allows “teleporting”

the current robot pose elsewhere.

6.5.9 Localizer Heading
Reports the heading on the automatically chosen axis (indicated by the Localizer Yaw Axis Auto-

Detect Decision Register) in radians, scaled by a factor of 5000. Perform a floating-point division

by 5000 to obtain the value in radians. Writing to this register allows “teleporting” the robot to a

new heading.

6.5.10 Localizer CRC16
Contains the CRC16 for the data contained in registers 0x0D through 0x19. Note that you MUST

read the ENTIRE RANGE of 0x0D through 0x1B in one operation if you wish to use this CRC value.

Refer to section 10 for details on the algorithm used.

Page 10 of 18

Spec. Rev. 3.0C

6.5.11 Channel data registers
These registers contain either quadrature counts or pulse width (in microseconds) for each

channel, depending on the channel bank configuration. In either case, the value for each

channel is a signed 32-bit integer. Pulse width will, of course, never be negative. If the channel is

set to PWM mode and the absolute encoder wrap tracking parameter is enabled, the register

will contain the pulse width accumulated across multiple revolutions of the encoder. Note,

however, that when using the wrap tracking feature, the channel pulse width min/max

parameter must be set correctly.

6.5.12 Channel velocity registers
These registers contain signed 16-bit velocity measurements for each channel.

For quadrature encoders, the velocity is defined as the net change in counts during the velocity

sampling interval (see below). For example, if the sampling interval is 100ms and at the

beginning of the interval the encoder count is 1234 and at the end of the interval the count is

1200, then the velocity value reported in the register will be -34. This would indicate a velocity

of -34 counts/0.1s, or -340 counts/s. To determine the velocity in counts/s, user code must

perform the appropriate multiplication factor based on the configured measurement interval.

The velocity sampling interval can be reduced to prevent overflow of the 16-bit counters when

using encoders that output a very large number of steps per second, or, it can be increased to

provide greater velocity precision on low step-rate encoders.

For pulse width input (absolute encoders) velocity is defined as the net change in microseconds

pulse length during the velocity sampling interval. (See discussion of quadrature velocity above).

Wrap-around is tracked internally at a much higher speed than the velocity measurement

interval, so even if an absolute encoder is rotated more than a full rotation during the velocity

measurement interval, the reported velocity will still be correct. Note, however, that when

using an absolute pulse width encoder, the channel pulse width min/max parameter must be

set correctly.

6.5.13 Encoder Data CRC16
Contains the CRC16 for the data contained in registers 0x1C through 0x4B. Note that you MUST

read the ENTIRE RANGE of 0x1C through 0x4D in one operation if you wish to use this CRC value.

Refer to section 10 for details on the algorithm used.

7 Commands

7.1 Description
The Command Register (see register map) may be used to issue various commands to the

OctoQuad, with up to 7 bytes of related data (to be written to the command operand registers).

Not all commands require this extra data. For those that do, the operand register(s) must be

written in the same bus transaction in which the Command Register is written.

7.2 Command List
The following commands are supported:

Page 11 of 18

Spec. Rev. 3.0C

Command Description Operand 0 Operands 1-6

0x00 NO-OP (No command)

0x01 Set Parameter Parameter ID Parameter-dependent

0x02 Get Parameter Parameter ID Parameter-dependent

0x03 Save Parameters to flash

0x14 Reset Everything

0x15 Reset Channels 8-bit channel bitfield

0x28
Reset Localizer + Calibrate
IMU

7.2.1 Reset Everything Command
This command resets quadrature encoder counts or measured pulse width to zero, and sets all

parameters to their factory defaults. NOTE: this does not save the newly reset parameters to

flash.

7.2.2 Reset Channels Command
This command zeros quadrature count(s) / pulse width measurement for one or more channels.

The first and only operand is a bitfield mapping to channel numbers. Each bit in the operand

corresponds to a channel, e.g., bit 3 corresponds to channel 3. When issuing this command, for

every bit that is set in the operand, the corresponding encoder’s count will be reset.

Multiple channels can be reset in one command operation. For example, writing 01000001 as

the operand will reset channel 6 and channel 0.

Reset Channel Command – Operand 1

Bit 7 6 5 4 3 2 1 0

Effect C7 Reset C6 Reset C5 Reset C4 Reset C3 Reset C2 Reset C1 Reset C0 Reset

7.2.3 Reset Localizer + Calibrate IMU Command
This command resets the localizer pose, loads updated localizer parameters, and begins the IMU

calibration routine. As part of the IMU calibration, the OctoQuad will detect the gravity vector to

automatically choose the proper axis and axis sign for yaw. Once this determination is made, the

chosen axis will remain fixed until the next issuance of this command. Watch the Localizer Yaw

Axis Auto-Detect Decision Register and the Localizer Status Register to determine when the

reset is complete.

7.2.4 Set Parameter Command
This command is used to set the value for a parameter. See below section on parameters.

7.2.5 Get Parameter Command
This command is used to get the current value of a parameter. See below section on

parameters.

Page 12 of 18

Spec. Rev. 3.0C

7.2.6 Save Parameters to Flash Command
This command may be used to save the current value of all parameters to flash, so that they will

be automatically restored after a power cycle.

8 Parameters

8.1 Description
The OctoQuad supports various user-configurable options (“parameters”) which affect its

operation. Parameters are not directly mapped to registers. Parameters may optionally be saved

to flash so that they are automatically restored after a power cycle. (See Save Parameters to Flash

command).

8.2 Parameter List

Parameter ID Name Values
0x00 Channel directions Channel bitfield (uint8_t)

0x01 I2C Recovery Mode I2C Recovery mode (uint8_t)

0x02 Channel Bank Config Channel Bank Mode (uint8_t)

0x03 Channel Velocity Interval Interval_ms (uint8_t)

0x04 Channel Pulse Width min/max
Min_μs (uint16_t)
Max_μs (uint16_t)

0x05 PWM Abs. Encoder Wrap Track Channel bitfield (uint8_t)

0x32
Localizer X-Axis Tracking Wheel
Resolution

Ticks per 1mm of travel along X axis
(float32)

0x33
Localizer Y-Axis Tracking Wheel
Resolution

Ticks per 1mm of travel along Y axis
(float32)

0x34 Localizer X-Axis TCP Offset Offset mm (float32)

0x35 Localizer Y-Axis TCP Offset Offset mm (float32)

0x36 Localizer IMU scalar IMU scalar (float32)

0x37 Localizer X-axis wheel port Port number (uint8_t)

0x38 Localizer Y-axis wheel port Port number (uint8_t)

0x39
Localizer velocity calculation
interval

Interval_ms (uint8_t)

8.3 Setting Parameters
A Parameter may be set by writing the Set Parameter command ID to the command register and

filling the command data registers (sequentially) with the parameter ID, followed by the value(s)

for the parameter. For parameter names in red the parameter values must be preceded by an 8-

bit integer corresponding to the channel index. (I.e. the first command data register filled after

the parameter ID must be the desired channel index, then the parameter value(s) follow in

subsequent command data registers). The general format for setting parameters is as follows:

Page 13 of 18

Spec. Rev. 3.0C

Setting a Parameter (write to these registers)

Register Command (0x04) Cmd Data 0 (0x05) Cmd Data 1-6 (0x06 – 0x0B)

Data Set Param (0x01) Param Number Parameter Vals. (1st may be ch idx)

8.4 Reading Parameters
Reading the current value of a parameter is accomplished in two steps. First, write the Read

Parameter command ID to the command register and fill the command data register 0 with the

parameter ID to be read. If reading a parameter name in red, then data register 1 must be filled

with a channel index. Once the Read Parameter command has been issued, the current

parameter value will be filled into the command data registers (starting with command data 0)

which can be retrieved with a subsequent read.

8.5 Parameter Descriptions

8.5.1 Channel Directions Parameter
This parameter is used to set the encoder count direction on a per-port basis. If the channel is

operating in quadrature mode, the step direction is simply reversed.

It has no effect if the channel is operating in pulse width input mode on firmware < v2.1. On

firmware >= 2.1, setting this parameter will cause the reported pulse width range (for an

absolute encoder) to be inverted. For example, if the pulse width range for an absolute encoder

is 1-1024μs when rotated clockwise, settings this parameter will cause the reported range to be

1-1024μs when rotated counter-clockwise. Note, however, that when using this parameter

with a channel operating in pulse width input mode, the channel pulse width min/max

parameter must be set correctly.

The first and only argument is a bitfield mapping to channel numbers. Each bit in the argument

corresponds to a channel, e.g., bit 3 corresponds to channel 3. When issuing this command, for

every bit that is set in the operand, the corresponding encoder channel will be negated.

Multiple channels can be configured one write to this register. For example, writing 01000001 to

the operand will set channel 6 and channel 0 to be negated.

Encoder Directions Parameter – Argument 0

Bit 7 6 5 4 3 2 1 0

Effect E7 DIR E6 DIR E5 DIR E4 DIR E3 DIR E2 DIR E1 DIR E0 DIR

8.5.2 I2C Recovery Mode Parameter
This parameter is used to set how aggressively the OctoQuad will attempt to un-wedge a hung

I2C bus. It has no effect if the OctoQuad is operating in any interface mode other than I2C. Three

modes are supported:

• 0: The OctoQuad will not attempt to perform any type of recovery for a stuck I2C bus

• 1: An inter-byte timeout is used for I2C transactions: successive byte transfers must

occur within 50ms of each other in order to prevent the timeout from expiring. If the

Page 14 of 18

Spec. Rev. 3.0C

timeout expires, the firmware will assume that the bus has become wedged and will

reset the I2C peripheral in an attempt to recover the bus.

• 2: Inter-byte timeout from Mode 1, plus pulling clock low for a small period of time if

1500ms elapses with no communications. May help to un-wedge master-side I2C

hardware on an incredibly glitch/noisy bus.

8.5.3 Channel Bank Mode Parameter
The OctoQuad contains two channel banks, covering channels 0-3 and 4-7. This parameter may

be used to set which mode (quadrature or pulse width measurement) each channel bank is

configured for. Possible values are:

• 0: All quadrature

• 1: All pulse width

• 2: First bank quadrature; second bank pulse width

8.5.4 Channel Velocity Measurement Interval Parameter
This parameter is used to set the time interval at which the velocity is calculated for each

encoder. The value is interpreted directly as milliseconds. For example, setting the value of this

parameter for a channel to the decimal value “40” means that the velocity for the respective

channel will be measured at 40ms intervals. The default interval is 50ms. Setting the sampling

interval to 0 will be disregarded.

8.5.5 Channel Pulse Width min/max Parameter
This parameter is used to inform the firmware of the minimum/maximum pulse lengths that an

absolute encoder will output, to enable accurate velocity calculation. This will default to

1μs/1024μs

8.5.6 PWM Abs. Encoder Wrap Track Parameter (Available with FW >= v3)
This parameter is used to enable or disable the absolute encoder pulse-width “wrap tracking”

accumulator. It has no effect on the channel if the channel is operating in quadrature input

mode.

The first and only argument is a bitfield mapping to channel numbers. Each bit in the argument

corresponds to a channel, e.g., bit 3 corresponds to channel 3. When issuing this command, for

every bit that is set in the operand, the feature is enabled for the corresponding channel.

Multiple channels can be configured one write to this register. For example, writing 01000001 to

the operand will enable the feature for channel 6 and channel 0.

PWM Abs. Encoder Wrap Track Parameter – Argument 0

Bit 7 6 5 4 3 2 1 0

Effect E7 Enbl E6 Enbl E5 Enbl E4 Enbl E3 Enbl E2 Enbl E1 Enbl E0 Enbl

Enabling this feature for a channel will cause the corresponding position register to report an

“accumulated” microseconds count across multiple rotations of the absolute encoder. For

example, suppose an absolute encoder has a minimum pulse length of 1μs and a maximum

pulse length of 1024μs. Then, the delta μs per revolution is 1023. Thus, with this feature

Page 15 of 18

Spec. Rev. 3.0C

enabled, if the encoder were started at the 1μs point and spun for 2.5 revolutions, the

accumulated delta is (1023μs/rev * 2.5rev) and position register would report +/- 25575 μs (sign

depending on the direction of rotation).

It is important to note that issuing a reset command for a channel with this feature enabled

does NOT clear the position register to zero. Rather, it zeros the “accumulator” (i.e. the number

of “wraps”) such that immediately after issuing a reset command, the position register will

contain the raw pulse width in microseconds. This behavior is chosen because it maintains the

ability of the absolute encoder to actually report its absolute position. If resetting the channel

were to really zero out the reported position register, using an absolute encoder would not

behave any differently than using a relative encoder.

When using this feature, the channel pulse width min/max parameter must be set correctly.

8.5.7 Localizer X-Axis / Y-Axis Tracking Wheel Resolution
This parameter is used to inform the localizer how many encoder ticks on the axis tracking

wheel correspond to 1mm of lateral travel on that axis. It is NOT recommended to calculate this

value. Rather, push the robot for a couple meters and divide the number of ticks by the distance

traveled to obtain this value. NOTE: This parameter does not take effect until the next issuance

of the Reset Localizer + Calibrate IMU Command.

8.5.8 Localizer X-Axis / Y-Axis TCP Offset
This parameter allows moving the Tracking Center Point (TCP) of the localizer. The TCP is the

point about which rotation does not affect X and Y position values. Without setting any offsets,

the mathematical location of the TCP is at the virtual intersection of lines which run through

each tracking wheel. Often, it is convenient to relocate the TCP to the center of the robot, since

most often a robot will rotate about its center. The offset describes the vector moving from the

mathematical TCP to the desired TCP location (usually the center of the robot). For more details,

refer to the Localizer Quick Start Guide. NOTE: This parameter does not take effect until the next

issuance of the Reset Localizer + Calibrate IMU Command.

8.5.9 Localizer IMU Scalar
Although the localizer algorithm automatically calibrates the bias of the IMU on startup, it

cannot automatically calculate the angular velocity scale factor, that is, calibrating the IMU such

that it reads N deg/sec if it is rotating at N deg/sec. The recommended way to calculate this

scale factor is to place the robot against a wall, reset the IMU, rotate the robot 3600 degrees (10

turns), return the robot against the wall, and then observe how many degrees off 0 the IMU

reports and calculate the needed correction factor. Suppose for example after rotating CCW

3600 degrees, the IMU reports a normalized heading of -10 degrees. The correction scale factor

can be calculated as 𝑘 =
3600 −(−10)

3600
= 1.002 NOTE: This parameter does not take effect until

the next issuance of the Reset Localizer + Calibrate IMU Command.

8.5.10 Localizer X-axis / Y-axis Wheel Port
These parameters tell the localizer which encoder ports the X and Y tracking wheels are

connected to. It must be in the range [0 … 7] corresponding to channels 0 through 7 on the

Page 16 of 18

Spec. Rev. 3.0C

OctoQuad. NOTE: This parameter does not take effect until the next issuance of the Reset

Localizer + Calibrate IMU Command.

8.5.11 Localizer Velocity Calculation Interval
This parameter is used to set the time interval at which the velocity is calculated for the

localizer. The value is interpreted directly as milliseconds. For example, setting the value of this

parameter to the decimal value “40” means that the velocity will be calculated at 40ms

intervals. The default interval is 25ms. Setting the sampling interval to 0 will be disregarded.

NOTE: This parameter does not take effect until the next issuance of the Reset Localizer +

Calibrate IMU Command.

9 Absolute Localizer

9.1 Overview
The onboard numerical-integration absolute localizer uses inputs from 2 passive tracking wheels

connected to the OctoQuad along with the onboard IMU to track robot XY position, XY velocity,

Heading, and Heading Angular Velocity in the world reference frame.

The algorithm used is a Pose Exponential running synchronized to the 1.92KHz data stream from

the IMU.

9.2 Robot Mounting Options (Automatic Gravity Detection)
The OctoQuad can be mounted in any of the 6 orientations orthogonal to the ground. When

issuing the Reset Localizer + Calibrate IMU Command, the OctoQuad will perform automatic

gravity detection to determine which axis of the IMU to use for robot yaw.

9.3 Sign Conventions
The +X axis points outward from the front of the robot when viewed top-down. The +Y axis points

outward from the left side of the robot when viewed top-down. A CCW rotation is positive. This

convention is chosen so that traveling at a heading of 0 degrees corresponds to traveling along

the +X axis, just like on a Cartesian coordinate plane. See the Localizer Quick Start Guide for more

details.

9.4 Required Parameters for Use
In order to use the absolute localizer, you must set the following parameters:

• Channel Directions Parameter – you must configure the channel direction for the ports

connected to the tracking wheels such that a positive encoder tick corresponds to a

positive axis movement according to the sign convention described in 9.3.

• Localizer X-axis / Y-axis Wheel Port Parameters

• Localizer X-Axis / Y-Axis Tracking Wheel Resolution Parameters

• Localizer X-Axis / Y-Axis TCP Offset Parameter

• Localizer IMU Scalar Parameter

• Localizer Velocity Calculation Interval Parameter

• IMPORTANT NOTE: After configuring the parameters, you must reset the localizer before

they will take effect!

Page 17 of 18

Spec. Rev. 3.0C

10 CRC16 Calculation

10.1 Algorithm
The algorithm used is the PROFIBUS CRC16, which has the following attributes:

• Polynomial: 0x1DCF

• Initial value: 0xFFFF

• Reflect input: no

• Reflect output: no

• XOR output: 0xFFFF

10.2 Sample CRC Calculation Code
static const uint16_t crc16_profibus_init = 0xFFFF;
static const uint16_t crc16_profibus_xor_out = 0xFFFF;
static const uint16_t crc16_profibus_table[] = {
 0x0000, 0x1DCF, 0x3B9E, 0x2651, 0x773C, 0x6AF3, 0x4CA2, 0x516D,
 0xEE78, 0xF3B7, 0xD5E6, 0xC829, 0x9944, 0x848B, 0xA2DA, 0xBF15,
 0xC13F, 0xDCF0, 0xFAA1, 0xE76E, 0xB603, 0xABCC, 0x8D9D, 0x9052,
 0x2F47, 0x3288, 0x14D9, 0x0916, 0x587B, 0x45B4, 0x63E5, 0x7E2A,
 0x9FB1, 0x827E, 0xA42F, 0xB9E0, 0xE88D, 0xF542, 0xD313, 0xCEDC,
 0x71C9, 0x6C06, 0x4A57, 0x5798, 0x06F5, 0x1B3A, 0x3D6B, 0x20A4,
 0x5E8E, 0x4341, 0x6510, 0x78DF, 0x29B2, 0x347D, 0x122C, 0x0FE3,
 0xB0F6, 0xAD39, 0x8B68, 0x96A7, 0xC7CA, 0xDA05, 0xFC54, 0xE19B,
 0x22AD, 0x3F62, 0x1933, 0x04FC, 0x5591, 0x485E, 0x6E0F, 0x73C0,
 0xCCD5, 0xD11A, 0xF74B, 0xEA84, 0xBBE9, 0xA626, 0x8077, 0x9DB8,
 0xE392, 0xFE5D, 0xD80C, 0xC5C3, 0x94AE, 0x8961, 0xAF30, 0xB2FF,
 0x0DEA, 0x1025, 0x3674, 0x2BBB, 0x7AD6, 0x6719, 0x4148, 0x5C87,
 0xBD1C, 0xA0D3, 0x8682, 0x9B4D, 0xCA20, 0xD7EF, 0xF1BE, 0xEC71,
 0x5364, 0x4EAB, 0x68FA, 0x7535, 0x2458, 0x3997, 0x1FC6, 0x0209,
 0x7C23, 0x61EC, 0x47BD, 0x5A72, 0x0B1F, 0x16D0, 0x3081, 0x2D4E,
 0x925B, 0x8F94, 0xA9C5, 0xB40A, 0xE567, 0xF8A8, 0xDEF9, 0xC336,
 0x455A, 0x5895, 0x7EC4, 0x630B, 0x3266, 0x2FA9, 0x09F8, 0x1437,
 0xAB22, 0xB6ED, 0x90BC, 0x8D73, 0xDC1E, 0xC1D1, 0xE780, 0xFA4F,
 0x8465, 0x99AA, 0xBFFB, 0xA234, 0xF359, 0xEE96, 0xC8C7, 0xD508,
 0x6A1D, 0x77D2, 0x5183, 0x4C4C, 0x1D21, 0x00EE, 0x26BF, 0x3B70,
 0xDAEB, 0xC724, 0xE175, 0xFCBA, 0xADD7, 0xB018, 0x9649, 0x8B86,
 0x3493, 0x295C, 0x0F0D, 0x12C2, 0x43AF, 0x5E60, 0x7831, 0x65FE,
 0x1BD4, 0x061B, 0x204A, 0x3D85, 0x6CE8, 0x7127, 0x5776, 0x4AB9,
 0xF5AC, 0xE863, 0xCE32, 0xD3FD, 0x8290, 0x9F5F, 0xB90E, 0xA4C1,
 0x67F7, 0x7A38, 0x5C69, 0x41A6, 0x10CB, 0x0D04, 0x2B55, 0x369A,
 0x898F, 0x9440, 0xB211, 0xAFDE, 0xFEB3, 0xE37C, 0xC52D, 0xD8E2,
 0xA6C8, 0xBB07, 0x9D56, 0x8099, 0xD1F4, 0xCC3B, 0xEA6A, 0xF7A5,
 0x48B0, 0x557F, 0x732E, 0x6EE1, 0x3F8C, 0x2243, 0x0412, 0x19DD,
 0xF846, 0xE589, 0xC3D8, 0xDE17, 0x8F7A, 0x92B5, 0xB4E4, 0xA92B,
 0x163E, 0x0BF1, 0x2DA0, 0x306F, 0x6102, 0x7CCD, 0x5A9C, 0x4753,
 0x3979, 0x24B6, 0x02E7, 0x1F28, 0x4E45, 0x538A, 0x75DB, 0x6814,
 0xD701, 0xCACE, 0xEC9F, 0xF150, 0xA03D, 0xBDF2, 0x9BA3, 0x866C
};

uint16_t crc16_profibus_compute(const uint8_t* const dat, uint32_t len)
{
 uint16_t crc = crc16_profibus_init;

 for (uint32_t i = 0; i < len; i++)
 {
 crc = (crc << 8) ^ crc16_profibus_table[(crc >> 8) ^ dat[i]];
 }

 return crc ^ crc16_profibus_xor_out;
}

Page 18 of 18

Spec. Rev. 3.0C

Special Thanks To

• j5155 (Capital City Dynamics): hardware testing & RoadRunner integration

• Miriam Sinton-Remes: hardware testing

• Laina Galayde: OctoQuad logo artwork

