
IS4310 Modbus RTU Slave

1/40 ISDOC125C, Revised February 2025
 Submit Feedback

IS4310: I2C Modbus RTU Slave Stack
500 Holding Registers

Main Advantages

• Eliminates engineering time and costs for

protocol implementation and testing.

• Simple and easy to use solution.

• Reduces product time-to-market (TTM).

• Reduces microcontroller CPU load.

• Reduces impact on microcontroller peripherals

(no need for timers or UARTs).

• Saves microcontroller pins with a shared I2C.

• Features a small, easy-to-solder SO8N

package.

• Provides a low-cost solution.

• Makes the Modbus protocol transparent.

• I2C Speeds: 100kHz, 400kHz, and 1MHz.

Applications

• Modbus Sensors

• Modbus Actuators

• Custom Modbus Devices

• Communications between PCBs

Modbus Stack Characteristics

• 500 Holding Registers

• 4 Configuration Holding Registers:

- Modbus Address ID

- Baud Rate

- Parity Bit

- Stop Bits

• Implemented Function Codes:

- 0x03 - Read Holding Registers

- 0x06 - Write Single Register

- 0x10 - Write Multiple Registers

General Description

The IS4310 is a chip that integrates a Modbus RTU

Slave stack. It features an internal memory of 500

Holding Register. These registers can be accessed

for reading and writing both by a microcontroller (via

I2C) and by the Modbus Master device (such as

PLC, computer, etc.).

The IS4310 features a UART port that can be

connected to the desired electrical interface

transceiver: RS485, RS422, RS232, etc.

The aim of the IS4310 is to save engineering time

and costs associated with implementing and testing

the Modbus RTU communication protocol, providing

a reliable solution that reduces the time-to-market

(TTM) of your product.

The IS4310 also brings benefits to your

microcontroller: it utilizes I2C, eliminating the need

for dedicated pins since I2C can be shared with other

peripherals. Additionally, it eliminates the need for

timers and decreases the CPU load on the

microcontroller.

The device operates at 3.3V, and its I/O pins are 5V

tolerant, allowing the use of either 3.3V or 5V

transceivers. It is available in two temperature

ranges: Industrial (-40ºC to +85ºC) and Extended (-

40ºC to +125ºC).

Part Number Package Op. Temperature

IS4310-S8-I SO8N -40ºC to +85ºC

IS4310-S8-E SO8N -40ºC to +125ºC

IS4310 Modbus RTU Slave

2/40 ISDOC125C, Revised February 2025
 Submit Feedback

Product Selection Guide

 Part Number Form Factor
Physical

Layer
Stack Description

O
n

ly
 S

ta
c
k

IS
4
3

1
0
-S

8

SO8N UART
Modbus
RTU Server

Modbus RTU Slave Stack Chip.

S
ta

c
k
 w

it
h

 P
h

y
s
ic

a
l
L

a
y
e
r

IS
4
3

1
0

-4
8
5
M

2

Castellated
Holes Module

RS485
Modbus
RTU Server

IS4310 with RS485 Transceiver.

Industrial communications.

IS
4
3

1
0
-I

S
O

4
8

5
M

6

Castellated
Holes Module

Isolated
RS485

Modbus
RTU Server

IS4310 with Isolated RS485 Transceiver.

The isolation offers more robust
communications and longer RS485 bus
distances.

IS
4
3

1
0
-2

3
2
M

4

Castellated
Holes Module

RS232
Modbus
RTU Server

IS4310 with RS232 Transceiver.

E
v
a
lu

a
ti

o
n

 B
o

a
rd

s

K
a
p

p
a
4
3

1
0
A

rd

Arduino
Compatible

RS485
Modbus RTU
Server

IS4310 Evaluation Board with RS485
Transceiver.

Compatible with Arduino.

K
a
p

p
a
4
3

1
0
R

a
s
p

Raspberry Pi
Compatible

RS485
Modbus RTU
Server

IS4310 Evaluation Board with RS485
Transceiver.

Compatible with Raspberry Pi.

IS4310 Modbus RTU Slave

3/40 ISDOC125C, Revised February 2025
 Submit Feedback

1. Electrical Specifications

Absolute Maximum Ratings

Parameter Symbol Min Nom Max Unit

Supply Voltage VDD -0.3 - 4
V

Input Voltage at any I/O pin VI/O-IN -0.3 - 5.5

Current Consumption

TA = 25ºC

IDD

- 3.05 3.60

mA TA = 85ºC - 3.15 3.80

TA = 125ºC - 3.35 4.16

Temperature
Operating Temperature TOP -40 - +85

ºC
Storage Temperature TSTO -65 - +150

Electrostatic Discharge
(TA = 25ºC)

Human-body model (HBM) VESD-HBM -2000 - +1500
V

Charged-device model (CDM) VESD-CDM -500 - +500

Exceeding the specifications outlined in the Absolute Maximum Ratings could potentially lead to irreversible harm

to the device. It's important to note that these ratings solely indicate stress limits and don't guarantee the device's

functionality under such conditions, or any others not specified in the Recommended Operating Conditions.

Prolonged exposure to conditions at or beyond the absolute maximum ratings might compromise the reliability of

the device.

Recommended Operation Conditions

Parameter Symbol Min Nom Max Unit

Supply Voltage VDD 2.0 3.3 3.6
V

Input Voltage at any I/O pin VI/O-IN -0.3 - 5.5

Source/Sink Current at any I/O Pin II/O-SS - - 20 mA

Electrical Characteristics

Parameter Symbol Min Nom Max Unit

Standby Current Consumption (TA = 25ºC) ISB - - 2.8 mA

Operating Current Consumption (TA = 25ºC) IOP - - 3.15 mA

Input Voltage
Logical High-Level VIH 0.7xVDD - -

V Logical Low-Level VIL - - 0.3xVDD

Input Hysteresis VHYST - 0.2 -

Flash Memory Cell Characteristics

This memory stores the configuration of the Modbus communications: Slave ID (MBADR), Baud Rate (MBBDR),

Parity (MBPAR), and Stop Bits (MBSTP).

Parameter Min Nom Max Unit

Write Cycles 10k - - Cycles

Data Retention

TA = 85ºC 30 - -

Years TA = 105ºC 15 - -

TA = 125ºC 7 - -

Programming time - - 25 ms

IS4310 Modbus RTU Slave

4/40 ISDOC125C, Revised February 2025
 Submit Feedback

2. Detailed Description

2.1. IS4310 Description

The IS4310 is an integrated circuit running a Modbus

RTU Slave Stack, providing an all-in-one and

independent Modbus Slave solution ready for

integration with a Microcontroller in customer

applications.

Note: This schematic is simplified for clarity and should not

be used for technical reference.

The IS4310 features two communication buses: a

TTL UART for Modbus and an I2C-Serial Interface

for the Microcontroller.

The Modbus-UART can connect with different types

of transceivers, such as RS485, RS422, RS232, fiber

and radio, with RS485 being the most typical. The

I2C-Serial Interface can connect to a Microcontroller,

microprocessor, single board computer like

Raspberry Pi, or development boards like Arduino.

The IC contains 504 Holding Registers (from address

0 to 503), each 16 bits long. Of these, 500 registers

are available for the customer's application and

utilize RAM as their memory type. Four registers are

dedicated to the Modbus configuration: Modbus

Address ID, Baud Rate, Parity and Stop Bits.

The Holding Registers is where the PLC (Modbus

Master) and the Microcontroller (customer

application) will exchange information.

In a motor controller application, for example, the

PLC can write the desired motor speed to specific

Holding Registers and read the motor's power

consumption from others. These registers act as a

shared memory bank where information is

exchanged between the two components of the

Modbus communication system: the Master and the

Slave.

Essentially, the IS4310 operates as an I2C memory

device integrated with the Modbus protocol, featuring

a memory map that represents the Holding

Registers. This map allows both the PLC and the

Microcontroller to read from and write to the registers

as needed.

It is available in Industrial (-40ºC to +85ºC) and

Extended Temperature Range (-40º to +125ºC).

This company and the products provided herein are

developed independently and are not affiliated with,

endorsed by, or associated with any official protocol

or standardization entity. All trademarks, names, and

references to specific protocols remain the property

of their respective owners.

IS4310 Modbus RTU Slave

5/40 ISDOC125C, Revised February 2025
 Submit Feedback

2.1.1. Function Codes

Following Function Codes are available on the

IS4310 (Modbus Slave):

• 0x03 - Read Holding Registers

• 0x06 - Write Sigle Register

• 0x10 - Write Multiple Registers

If the PLC (Modbus Master) attempts to execute a

query with a Function Code not listed above, the

IS4310 (Modbus Slave) will respond with Exception

Code 1.

2.1.2. Exception Codes

There are scenarios where the PLC can issue invalid

queries to the IS4310 (Modbus Slave). In such

cases, the IS4310 will respond to the PLC (Modbus

Master) with one of the following Modbus Exception

Codes:

Code 1: ILLEGAL FUNCTION

The Modbus Master queried a non-valid Function

Code to the IS4310 (Modbus Slave). Valid Function

codes are 0x03, 0x06, 0x10.

Code 2: ILLEGAL DATA ADDRESS

The Modbus Master attempted to read or write one

or more Holding Registers higher than 503.

Alternatively, the query's starting register was valid,

but the total number of registers requested exceeded

503.

Code 3: ILLEGAL DATA VALUE

The query performed by the PLC has errors.

2.2. IS4310 Advantages

The use of the IS3410 brings the following benefits:

1. Eliminates engineering time and costs for

protocol implementation and testing.

2. Reduces product time-to-market (TTM).

3. Increased product reliability.

4. Saved microcontroller pins.

5. Reduced microcontroller CPU load.

The IS4310 significantly reduces engineering time by

eliminating the need to manually implement and test

the Modbus protocol. This time saving allows

engineers to allocate resources more efficiently

towards other critical aspects of product

development. Additionally, this efficiency facilitates a

faster time-to-market (TTM) and shortens the time to

develop a minimum viable product (MVP). The

streamlined development process enables

companies to accelerate their product launch

timelines, meeting market demands swiftly and

effectively.

Using the IS4310 solution enhances customer

application reliability. With the Modbus protocol

already embedded and tested, there are fewer bugs

and issues in the customer application, leading to a

more robust and reliable product in the field. This

also reduces the need for releasing firmware updates

to patch undetected bugs and issues related to the

Modbus communication protocol.

Additionally, using the IS4310 can reduce

Microcontroller pin requirements by saving three

dedicated UART pins (Rx, Tx, and direction) and

utilizing a shared bus like I2C.

Furthermore, offloading the Modbus protocol

processing to the IS3410 saves Microcontroller CPU

load, Flash, RAM memory, and TMR resources. This

efficiency enhancement allows the Microcontroller to

handle other tasks more effectively, contributing to

overall system performance improvements and

enabling the selection of a lower-end Microcontroller.

In conclusion, the usage of IS4310 not only

streamlines development, enhances reliability, and

accelerates time-to-market but also optimizes

Microcontroller resources, making it a

comprehensive solution for efficient product

development and deployment.

IS4310 Modbus RTU Slave

6/40 ISDOC125C, Revised February 2025
 Submit Feedback

2.3. Modbus UART Port

The IS4310 is compatible with any Modbus RTU

Serial Interface, including RS485, RS422, RS232,

and others, thanks to its UART port. A transceiver

matching the serial interface of the field bus (RS485,

RS422, RS232, etc.) must be connected to the

IS4310 UART port. This transceiver adapts the field

bus voltage levels to 3.3V or 5V, ensuring proper

operation with the IS4310.

Note: Connecting field buses like RS485 or others

directly to the IS4310 will not work and will

permanently damage the device.

For example, if the customer application connects to

an RS485 field bus, an RS485 transceiver such as

the THVD1330 should be used.

Refer to chapter “Implementation Guide” for

hardware design example.

IS4310 Modbus RTU Slave

7/40 ISDOC125C, Revised February 2025
 Submit Feedback

3. Pin Description

Pin Name Type Description

1 SDA
Open Drain
5V Tolerant

I2C-compatible Data pin. Open drain, it requires pull-up.

2 VDD Supply
3.3V power supply pin.
Bypass this pin to GND with a 100nF ceramic capacitor.

3 VSS Ground Ground reference pin.

4 TX
Digital Output

Push-Pull

Modbus UART pins in TTL voltage levels. TX is the IS4310 transmit pin, RX the IS4310
receive pin.

Attention:
Only digital 3.3V or 5V can be applied to this pin.
Use the appropriate transceiver to connect the IS4310 with the desired bus.
Do not connect field buses such as RS485, RS422, RS232 or other directly to this pin. Field
buses voltages are not compatible with TTL.

5 RX
Digital Input
5V Tolerant

6 DIR
Digital Output

Push-Pull

Direction pin for the transceivers, used to control the data flow direction on the bus.
This pin goes high only when the IS4310 is transmitting data. It goes low while receiving
data or waiting for data.

Example:
In an RS485 transceiver, the Receiver Output Enable (RE) and Driver Output Enable (DE)
pins are connected to this pin.

7 I2CSPD
Analog Input

0 to 3.3V

I2C-Serial Interface Speed Selection pin.

• For 100kHz pull to GND.

• For 400kHz make a voltage divider of VDD/2 (1.65V).

• For 1MHz pull to VDD (3.3V).
Attention: Voltage above 4V will damage the device.

8 SCL
Open Drain
5V Tolerant

I2C-compatible Clock pin. Open drain, it requires pull-up.

TX and RX Pins

Modbus UART Transmit and Receive Pins.

These pins handle UART transmit and receive

functions for Modbus data and operate at TTL levels

of 3.3V and they are 5V tolerant.

To interface with the field bus, these pins must

connect to a suitable transceiver based on the field

bus used: RS485, RS422, RS232, or others.

Please note that applying directly field bus (RS485,

RS422, RS232, etc.) voltage levels to those pins will

permanently damage the device.

For an RS485 fieldbus, use an RS485 transceiver,

such as the THVD1330DR, to convert RS485

differential signaling to TTL/CMOS voltage levels.

For an RS232 fieldbus, a transceiver like the

MAX3221 can be used. Refer to the “Hardware

Implementation ” chapter for more details.

DIR Pin

Modbus Direction Pin.

This pin is typically used in transceivers to control the

data flow (sending or receiving). For RS485

transceivers, it connects to the DE and RE̅̅ ̅̅ pins of the

transceiver.

Modbus Over Serial Line is usually implemented on

“Two-Wire” RS485 electrical interface, which

operates in a half-duplex topology. Therefore, a

direction pin is needed to indicate whether the

transceiver should send or receive data. By default,

the DIR pin is in a low state, which sets the

transceiver to receive mode.

IS4310 Modbus RTU Slave

8/40 ISDOC125C, Revised February 2025
 Submit Feedback

SCL and SDA Pins

I2C-Compatible Bus Interface Pins.

SCL (Serial Clock Line): This pin is used to

synchronize data transfer between the IS4310

device and the Microcontroller or other CPU.

SDA (Serial Data Line): This bidirectional pin is used

for both sending and receiving data between the

IS4310 and the Microcontroller or other CPU.

Both pins are open-drain and must be pulled up to

3.3V or 5V. The pull-up resistor value should be

chosen based on the bus speed and capacitance.

Typical values are 4.7kΩ for Standard Mode

(100kbps) and 2.2kΩ for Fast Mode (400kbps) at

both 3.3V and 5V.

I2CSPD Pin

I2C-Serial Interface Speed Selection Pin.

This pin configures the IS4310 internal I2C-Serial

Interface timings and filters to properly work with the

selected bus speed.

1. For a 100kHz setting, set the I2CSPD pin to

VSS.

2. For a 400kHz setting, set the I2CSPD to 1.65V

(VDD/2) using a balanced voltage divider. This

can be achieved by placing two 4.7kΩ resistors

from the I2CSPD pin: one to VDD and the other

to VSS.

3. For a 1000MHz setting, set the I2CSPD pin to

VDD.

Important Remark:

A mismatch between the configured I2C speed and

the actual operating I2C speed (e.g., configuring the

bus for 100kHz but operating at 1MHz) can lead to

an inconsistent state where some I2C messages are

processed while others are not.

Ensure a proper match between the actual operating

speed and the configured speed at the I2CSPD pin:

If your bus works at 100kHz, ensure the I2CSPD pin

is tied to VSS. If it works at 400kHz ensure the pin is

at 1.65V. If it works at 1000MHz, ensure the pin is at

3.3V.

IS4310 Modbus RTU Slave

9/40 ISDOC125C, Revised February 2025
 Submit Feedback

4. Memory Description

4.1. Memory Map Organization

The IS4310 is organized internally as a single page

containing 504 registers, with addresses ranging

from 0 to 503. These registers can be accessed

individually or in blocks. Each register is 16 bits long,

and there are two types: Holding Registers and

Configuration Registers. Both types are readable

and writable and can be accessed by the

Microcontroller via I2C or by the Modbus Master

through a field bus (RS485, RS422, RS232, etc.).

Holding Registers

The Holding Registers consist of 500 volatile RAM

registers, with addresses ranging from 0 to 499.

The Holding Registers (HOLDx) are available for

your application. For example, if you are developing

a gas sensor, these registers can store data such as

gas concentration and the total operating hours of

the sensor. The Microcontroller will continuously

write to these registers, while the Modbus Master will

read from them.

If you are developing an actuator, such as a relay

module, these registers can store the state of the

relays. In this case, the Microcontroller will

continuously read from the registers, while the

Modbus Master will write to them as needed.

You can also combine reading and writing operations

within the same application. For example, when

developing a Modbus motor controller, the Modbus

Master can write the motor's speed and read its

power consumption. In this case, the Microcontroller

will continuously read from the registers assigned to

the speed and write to the registers related to power

consumption.

Configuration Registers

The Configuration Registers consist of four registers,

with addresses ranging from 500 to 503. Any

modifications to these registers are stored in the

internal non-volatile memory. Upon power-up, the

IS4310 retrieves the last saved configuration.

Four configuration registers are used to set the

Modbus communication parameters: Modbus

Address ID (MBADR), Baud Rate (MBBDR), Parity

Bit (MBPAR), and Stop Bit (MBSTP).

Both the Modbus Master and the Microcontroller can

write to these registers, and the changes take effect

immediately.

Important Remark:

In a Modbus network, two slaves cannot have the

same Address ID. Doing so will cause both devices

to become unresponsive.

IS4310 Modbus RTU Slave

10/40 ISDOC125C, Revised February 2025
 Submit Feedback

4.2. Memory Map Table

I2
C

 R
e
g
is

te
r

A
d
d

re
s
s

M
o
d

b
u

s
 R

e
g
is

te
r

A
d
d
re

s
s

 R
e
g
is

te
r

N
a
m

e

R
e
g
is

te
r

D
e
s
c
ri

p
ti
o

n

0 0 HOLD0 Holding Register 0

1 1 HOLD1 Holding Register 1

2 2 HOLD2 Holding Register 2

3 3 HOLD3 Holding Register 3

4 4 HOLD4 Holding Register 4

5 5 HOLD5 Holding Register 5

… …
(HOLD6 to
HOLD493)

…

494 494 HOLD494 Holding Register 494

495 495 HOLD495 Holding Register 495

496 496 HOLD496 Holding Register 496

497 497 HOLD497 Holding Register 497

498 498 HOLD498 Holding Register 498

499 499 HOLD499 Holding Register 499

500 500 MBADD Configuration Register, Slave Address Configuration

501 501 MBBDR Configuration Register, Baud Rate Configuration

502 502 MBPAR Configuration Register, Parity Bit Configuration

503 503 MBSTP Configuration Register, Stop Bits Configuration

IS4310 Modbus RTU Slave

11/40 ISDOC125C, Revised February 2025
 Submit Feedback

4.3. HOLDx Registers

HOLDx Registers are Modbus Holding Registers

available for use in your application. They can be

accessed (read and written) by both the Modbus

Master and the Microcontroller. The access can be

individually or in block. Each register is 16 bits long

and they are volatile RAM.

If your product is a sensor, these registers are

typically written by the Microcontroller with sensed

data, such as pressure, temperature, or humidity,

and read by the Modbus Master.

If the product is an actuator, these registers are

usually written by the Modbus Master with control

data, such as relay states (on/off), motor speed, or

solenoid valve positions, and read by the

Microcontroller.

These registers can also serve as a bidirectional data

exchange point, allowing both the Modbus Master

and the Microcontroller to read and write data.

.

 Name: HOLDx

 Description: Modbus Holding Registers

 Address Range: 0 to 499 (0x000 to 0x1F3)

 Default value: 0 (0x0000)

 Memory Type: Volatile RAM

 Allowed values: 0 to 65535 (0x00 to 0xFFFF)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 HOLDx [15 to 8]

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 HOLDx [7 to 0]

IS4310 Modbus RTU Slave

12/40 ISDOC125C, Revised February 2025
 Submit Feedback

4.4. MBADR Register

This register represents the Slave Address of the

device on the Modbus network. The value written to

this register serves as the identifier for the Modbus

device.

The default value is 1. Each Slave must have a

unique address, as two Slaves with the same

address will cause both devices to become

unresponsive.

The allowed address range is from 1 to 247.

Attempting to write an address outside this range will

have no effect.

This register is placed at the end of the Holding

Register section to minimize the risk of accidentally

overwriting the Modbus configuration registers.

Any modifications to this register will be saved in the

internal non-volatile memory, which supports up to

10,000 cycles. A write cycle occurs only if the written

data differs from the previous value. The write

process takes 25ms. Upon power-up, the IS4310

automatically retrieves the last saved configuration.

 Name: MBADR

 Description: Slave Address Configuration

 Register Address: 500 (0x1F4)

 Default value: 1 (0x0001)

 Memory Type: Non-Volatile RAM

 Allowed values: 1 to 247 (0x0000 to 0x00F7)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 - - - - - - - -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 MBADD [7 to 0]

IS4310 Modbus RTU Slave

13/40 ISDOC125C, Revised February 2025
 Submit Feedback

4.5. MBBDR Register

The MBBDR register stores the Modbus Baud Rate

configuration. The default value is 113, representing

19200 bps, which is the default Modbus speed.

Allowed configuration values range from 110 to 115;

attempting to write any other values will not have any

effect.

- Value 110 sets a Modbus speed of 1200bps.

- Value 111 sets a Modbus speed of 2400bps.

- Value 112 sets a Modbus speed of 9600bps.

- Value 113 (default) sets a Modbus speed of

19200bps.

- Value 114 sets a Modbus speed of 57600bps.

- Value 115 sets a Modbus speed of 115200bps.

This register is placed at the end of the Holding

Register section to minimize the risk of accidentally

overwriting the Modbus configuration registers.

Any modifications to this register will be saved in the

internal non-volatile memory, which supports up to

10,000 cycles. A write cycle occurs only if the written

data differs from the previous value. The write

process takes 25ms. Upon power-up, the IS4310

automatically retrieves the last saved configuration.

 Name: MBBDR

 Description: Baud Rate Configuration

 Register Address: 501 (0x1F5)

 Default value: 113 (0x0071)

 Memory Type: Volatile RAM

 Allowed values: 110 to 115 (0x006E to 0x0073)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 - - - - - - - -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 MBBDR [7 to 0]

IS4310 Modbus RTU Slave

14/40 ISDOC125C, Revised February 2025
 Submit Feedback

4.6. MBPAR Register

The MBBDR register stores the Modbus Parity Bit

configuration. The default value is 122, representing

Even Parity, which is de default Modbus Parity.

Allowed configuration values range from 110 to 115;

attempting to write any other values will not have any

effect.

- Value 120 represents No Parity.

- Value 121 represents Odd Parity.

- Value 122 (default) represents Even

Parity.

This register is placed at the end of the Holding

Register section to minimize the risk of accidentally

overwriting the Modbus configuration registers.

Any modifications to this register will be saved in the

internal non-volatile memory, which supports up to

10,000 cycles. A write cycle occurs only if the written

data differs from the previous value. The write

process takes 25ms. Upon power-up, the IS4310

automatically retrieves the last saved configuration.

 Name: MBPAR

 Description: Parity Bit Configuration

 Register Address: 502 (0x1F6)

 Default value: 122 (0x007A)

 Memory Type: Volatile RAM

 Allowed values: 120 to 122 (0x0078 to 0x007A)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 - - - - - - - -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 - - - - - - MBPAR [1 to 0]

IS4310 Modbus RTU Slave

15/40 ISDOC125C, Revised February 2025
 Submit Feedback

4.7. MBSTP Register

The MBBDR register contains the Modbus Parity Bit

configuration. The default value is 131, representing

One Stop Bit, which is the default Modbus Sop Bit.

Allowed configuration values range from 131 to 132;

attempting to write any other values will not have any

effect.

- Value 131 (default) One Stop bit (default).

- Value 132 Two Stop bit.

This register is placed at the end of the Holding

Register section to minimize the risk of accidentally

overwriting the Modbus configuration registers.

Any modifications to this register will be saved in the

internal non-volatile memory, which supports up to

10,000 cycles. A write cycle occurs only if the written

data differs from the previous value. The write

process takes 25ms. Upon power-up, the IS4310

automatically retrieves the last saved configuration.

 Name: MBSTP

 Description: Stop Bits Configuration

 Register Address: 503 (0x1F7)

 Default value: 131 (0x0083)

 Memory Type: Non-Volatile RAM

 Allowed values: 131 and 132 (0x0083 and 0x0084)

 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

 - - - - - - - -

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 - - - - - - MBPAR [1 to 0]

IS4310 Modbus RTU Slave

16/40 ISDOC125C, Revised February 2025
 Submit Feedback

5. I2C-compatible Bus Description

5.1. Overview

The IS4310 operates as a slave in the I2C-Serial

Interface. It supports Standard Mode (100kHz), Fast

Mode (400kHz), and Fast Mode Plus (1MHz). The

I2C-master device, typically a microcontroller or a

single board computer, initiates and manages all

read and write operations to the Slave.

Pull-up resistors are required on the SCL and SDA

lines for proper operation. The resistor values

depend on the bus capacitance and operating speed.

Typical values are 10kΩ for Standard Mode (100kHz)

and 2kΩ for Fast Mode and Fast Mode Plus (400kHz

and 1MHz).

The IS4310's high state can be either 3.3V or 5V. A

logical '0' is transmitted by pulling the line low, while

a logical '1' is transmitted by releasing the line,

allowing it to be pulled high by the pull-up resistor.

The Master controls the Serial Clock (SCL) line,

which generates the synchronous clock used by the

Serial Data (SDA) line to transmit data.

A Start or Stop condition occurs when the SDA line

changes during the High period of the SCL line. Data

on the SDA line must be 8 bits long and is transmitted

Most Significant Bit First and Most Significant Byte

First. After the 8 data bits, the receiver must respond

with either an acknowledge (ACK) or a no-

acknowledge (NACK) bit during the ninth clock cycle,

which is generated by the Master. To keep the bus in

an idle state, both the SCL and SDA lines must be

released to the High state.

The operability of the Read and Write commands of

the IS4310 is very similar to an EEPROM memory.

Thinking of the IS4310 as an EEPROM memory is a

good analogy to quickly understand how to

communicate with the device.

Summary

4.I2C Device Address: 17 (0x11)

5.Compatible I2C Speeds:

- Standard Mode (100kHz)

- Fast Mode (400kHz)

- Fast Mode Plus (1MHz)

.

IS4310 Modbus RTU Slave

17/40 ISDOC125C, Revised February 2025
 Submit Feedback

5.2. Read Operations

5.2.1. Single Word Read

Reading a single word is an action performed by the

Microcontroller (I2C-Master) to access any register

within the IS4310 memory (I2C-Slave), regardless of

the last read or written position. To perform this

action, the microcontroller must first load the address

of the IS4310 register to be read into the IS4310's

internal Pointer Register. Once the address is set, the

microcontroller can retrieve the data from the

specified register.

To initiate the Single Word Read operation, the

microcontroller begins by pulling down the SDA while

the SCL is high to create a Start Condition. It then

sends the IS4310 I2C device address (0x11) with the

R/W bit set to '0' (write). Upon receiving the device

address, the IS4310 acknowledges it. Subsequently,

the microcontroller sends the two bytes of the Pointer

Register address: the most significant byte first,

followed by the less significant byte, each

acknowledged by the IS4310. This sets the address

of the next word to be read in the Pointer Register.

Next, the content of the Pointer Register, which is a

word (two bytes), needs to be read.

The microcontroller generates a Repeated Start

Condition, followed by the IS4310 I2C device

address (0x11) with the R/W bit set to '1' (read),

instructing the IS4310 to retrieve data. The IS4310

acknowledges and responds with the most significant

byte, which the microcontroller acknowledges. Then,

the IS4310 sends the less significant byte, which the

microcontroller does not acknowledge (NACK).

Finally, the microcontroller issues a Stop Condition

by raising the SDA line while the SCL is high.

Invalid Memory Addressing

The valid memory range of the IS4310 goes from

addresses 0 to 503. If a Read Operation is performed

with a Pointer Register higher than 503, the read

result will be 0xFFFF.

IS4310 Modbus RTU Slave

18/40 ISDOC125C, Revised February 2025
 Submit Feedback

5.2.2. Multiple Word Read

Multiple Word Read functions similarly to Single

Word Read but can read a block of up to 500

registers in a single operation. Remember, the

registers are 16-bit words consisting of 2 bytes, so

the number of registers retrieved should always be

even.

To perform a Multiple Word Read, follow the same

procedure as for a Single Word Read until the first

data word is received. After receiving the first word,

instead of generating a Not Acknowledge (NACK),

the microcontroller should continue acknowledging

(ACK) each received data byte from the IS4310 for

as many words as it intends to read. To conclude the

read operation, after reading the last data word, the

microcontroller should generate a Not Acknowledge

(NACK) and a Stop Condition.

With each word read, the Pointer Register

increments by one.

Invalid Memory Addressing

The valid memory range of the IS4310 goes from

addresses 0 to 503.

If the Read Operation is performed with a Pointer

Register within the valid memory range (0 to 503),

but the data retrieval extends beyond register 503, a

rollover to position 0 will occur. For example, the

value of register 504 will correspond to the content of

register 0.

If a Read Operation is performed with a Pointer

Register value higher than 503, the read result will be

0xFFFF.

IS4310 Modbus RTU Slave

19/40 ISDOC125C, Revised February 2025
 Submit Feedback

5.3. Write Operations

5.3.1. Single Word Write

Writing a single word is an action performed by the

Microcontroller (I2C-Master) to write data to any

register within the IS4310 memory (I2C-Slave),

regardless of the last read or written position. To

perform this action, the Microcontroller must first load

the address of the IS4310 register to be written into

the IS4310's internal Pointer Register. Once the

address is set, the Microcontroller can send the data

to be stored.

To initiate the Single Word Write operation, the

Microcontroller begins by pulling down the SDA line

while the SCL line is high, creating a Start Condition.

It then sends the IS4310 I2C device address (0x11)

with the R/W bit set to '0' (write). Upon receiving the

device address, the IS4310 acknowledges it.

Subsequently, the Microcontroller sends the two

bytes of the Pointer Register address: the most

significant byte first, followed by the least significant

byte, each acknowledged by the IS4310. This sets

the address of the next word to be written in the

Pointer Register, preparing the device to receive the

data.

The Microcontroller then sends the most significant

byte of the word to be written first, which the IS4310

acknowledges. The Microcontroller follows by

sending the least significant byte of the word, which

the IS4310 also acknowledges. Finally, the

Microcontroller issues a Stop Condition by raising the

SDA line while the SCL line is high.

After the Stop Condition, if any of the Modbus

Configuration Registers (MBADR, MBBDR, MBPAR,

MBSTP) are written with a value different from the

previous one, a 25 millisecond Flash Memory write

cycle will begin.

Invalid Memory Addressing

The valid memory range of the IS4310 goes from

addresses 0 to 503. If a Write Operation is performed

with a Pointer Register higher than 503, the IS4310

will answer with a NACK on the first received byte of

the word.

IS4310 Modbus RTU Slave

20/40 ISDOC125C, Revised February 2025
 Submit Feedback

5.3.2. Multiple Word Write

A Multiple Word Write performs a similar operation to

a Single Word Write, but instead of writing to only one

register, it can write to a block of up to 500 registers

in a single operation.

To perform a Multiple Word Write, follow the same

procedure as for a Single Word Write until the first

data word is received. After receiving the first word,

instead of generating a Stop Condition, the

Microcontroller should continue sending data words.

To conclude the write operation, after sending the

last data word, the Microcontroller should generate a

Stop Condition.

With each word written, the Pointer Register

increments by one.

After the Stop Condition, if any of the Modbus

Configuration Registers (MBADR, MBBDR, MBPAR,

MBSTP) are written with a value different from the

previous one, a 25 millisecond Flash Memory write

cycle will begin.

Invalid Memory Addressing

The valid memory range of the IS4310 goes from

addresses 0 to 503.

If a Write Operation is performed with a Pointer

Register within the valid memory range (0 to 503) but

exceeds the last memory register (503), a rollover to

position 0 will occur. For example, writing a value to

register 504 will result in writing the value to register

0.

If a Write Operation is performed with a Pointer

Register higher than 503, the IS4310 will answer with

a NACK on the first received byte of the word.

IS4310 Modbus RTU Slave

21/40 ISDOC125C, Revised February 2025
 Submit Feedback

6. Hardware Implementation Guide
The following chapter represents an application design example for explanation proposals and is not part of the

product standard. The customer must design his own solution, choose its most appropriate components and

validate the final product according to the legislation and the Modbus specifications.

6.1. RS485 Example

This example shows the design of a Modbus over Serial Line working in RS485.

More examples can be found on the website.

Block A: Connector

Typical Modbus Serial Line connectors include

Screw Terminals, RJ45, and D-Sub 9-pin (commonly

known as DB9), among others. The device-side

connector must be female, while the cable-side

connector must be male.

The recommended connector is RJ45, but in the

schematic, a screw terminal is used for simplicity.

When selecting a connector, always choose the

shielded version if available. RJ45 and DB9

connectors typically come with shielded options,

while terminal blocks usually do not.

On the cable-side connector, make sure to connect

the cable shield to the connector shield to ensure

proper electrical continuity across all cable shields

on the bus.

Do not connect the shield to the Common. All cable

shields should be connected to Common and

Protective Ground at a single point for the entire bus,

ideally at the master device.

In the example, the connector has three positions: A,

B, and Common. A and B are the differential lines for

the transceiver, while Common serves as the

reference point for the A and B signals. Common

must be connected to the GND of your circuit.

Optionally, power can be supplied to your system

through the Modbus connector. In this case, a four-

position connector would be used for A, B, Common,

and Power. In that case, the Common serves as the

reference for A and B signals as well as the return

path for Power. The voltage should be within the 5V

to 24V range.

Block B: Protection & Line Polarization

Protection

The protection stage is influenced by several factors,

including the intrinsic robustness and protection

features of the transceiver, the potential harshness

of the fieldbus environment, the product's budget,

and its required reliability, among other

considerations. Refer to your transceiver's

documentation to determine the appropriate

protection requirements.

In the schematic, a bidirectional 400-W transient

suppressor diodes are used to protect against surge

transients.

Line Polarization

Line Polarization is the process of biasing the RS485

bus to a known state by pulling signal A down and

pulling signal B to 5V using resistors in the range of

450 to 650Ω. This ensures that the bus has a defined

idle state.

When there is no data activity on an RS-485

balanced pair, the lines are not actively driven and

are therefore susceptible to external noise or

interference. To ensure that the transceiver remains

in a stable state when no data signal is present,

IS4310 Modbus RTU Slave

22/40 ISDOC125C, Revised February 2025
 Submit Feedback

some transceivers require a biasing circuit. However,

not all transceivers need this.

When selecting your transceiver, confirm in the

datasheet whether line polarization is necessary or

not. If it is necessary, you must document it in the

product guide.

If polarization is needed, it should ONLY be

implemented at one location on the bus, typically at

the master device.

Bus polarization is a good technic to increase the

resistance of the bus to external noise or

interferences. However, it has the drawback of

significantly reducing the number of devices that can

support the bus.

Block C: Transceiver

Modbus over Serial Line typically employs the

RS485 electrical interface, which uses a transceiver

to adapt RS485 fieldbus voltage levels to TTL

voltage levels for the IS4310. Other electrical

interfaces such as RS422 or RS232 can also be

utilized.

A pull-down resistor on DE and RE will keep the

transceiver in ‘receiver’ state by default, ensuring it

does not disturb the fieldbus. Pull-up resistor on RO

will keep the RX line clear.

Using a 5V transceiver is a good technic to increase

the resistance of the bus to external noise or

interferences. 5V transceivers can be used with the

IS4310 since TX, RX and DIR pins are 5V tolerant.

Block D: IS4310 Modbus RTU Slave

The IS4310 is very simple to integrate into your

design.

A decoupling capacitor should be placed on the

power pins (VDD and VSS). It is recommended to

use a 100nF, 10-25V low-ESR ceramic capacitor.

The I2CSPD pin defines the I2C speed. Connect this

pin to GND for a speed of 100kHz. For 400kHz, it

should be pulled to 1.65V, which is half of 3.3V. This

can be achieved with a simple resistor voltage divider

using 3.3V and GND. For 1MHz, the pin must be

connected to 3.3V. This pin is not 5V tolerant.

Block E: I2C-Serial Interface

For proper operation of the I2C Serial Interface, pull-

up resistors to 3.3V or 5V are necessary. Typical

resistor values are 4.7kΩ for Standard Mode

(100kHz) and 2.2kΩ for both Fast Mode (400kHz)

and Fast Mode Plus (1MHz).

Block F: Your Application

Here is the rest of your product design. Typically, a

microcontroller interfaces with the IS4310, but a

microprocessor or a single-board computer, such as

a Raspberry Pi, can also be used as long as they are

equipped with an I2C Serial Interface.

IS4310 Modbus RTU Slave

23/40 ISDOC125C, Revised February 2025
 Submit Feedback

6.2. Isolated RS485 Example

IS4310 Modbus RTU Slave

24/40 ISDOC125C, Revised February 2025
 Submit Feedback

6.3. RS232 Example

IS4310 Modbus RTU Slave

25/40 ISDOC125C, Revised February 2025
 Submit Feedback

6.4. Bus Topology

In an RS485 setup without a repeater, a single trunk cable runs through the system, with devices connected in a

daisy-chain manner. Short cables derivations (stubs) are also allowed but not recommended. Keep the derivation

distance as short as possible. Other topologies are not allowed.

IS4310 Modbus RTU Slave

26/40 ISDOC125C, Revised February 2025
 Submit Feedback

6.5. Cable Wiring

IS4310 Modbus RTU Slave

27/40 ISDOC125C, Revised February 2025
 Submit Feedback

7. Firmware Implementation Guide
The following chapter presents firmware examples for different platforms for demonstration purposes only and is not part of the product standard. Customers must develop their

own firmware, perform all necessary tests, and validate the final product according to applicable regulations and Modbus specifications.

7.1. Arduino Example

Coding for the IS4310 requires no dedicated library, making it easy to maintain and port to new Arduino boards or other microcontrollers.

This code reads the Modbus Slave ID and prints it to the terminal. Then, it stores a humidity variable in Modbus Holding Register address 0. This variable can be accessed by a

Modbus Master device, such as a PC, PLC, or other controller.

You can download the Arduino project from the IS4310 product page.

This example uses the Kappa4310Ard Evaluation Board. Check the Kappa4310Ard product folder for more information.

#include <Wire.h>

void writeHoldingRegister(uint16_t holdingRegisterAddress, uint16_t data) {

 Wire.beginTransmission(0x11); // This is the I2C Chip Address of the IS4310. Never changes.

 // A Holding Register address is 16-bits long, so we need to write 2 bytes to indicate the address.

 Wire.write((holdingRegisterAddress >> 8) & 0xFF); // Send high 8-bits of the Holding Register Address we want to write.

 Wire.write(holdingRegisterAddress & 0xFF); // Send low 8-bits of the Holding Register Address we want to write.

 // A Holding Register data register is 16-bits long. So we need to write 2 bytes to make a full Holding Register Write:

 Wire.write((data >> 8) & 0xFF); // Send high 8-bits of the data we want to write to the Holding Register.

 Wire.write(data & 0xFF); // Send low 8-bits of the data we want to write to the Holding Register.

 Wire.endTransmission();

}

uint16_t readHoldingRegister(uint16_t holdingRegisterAddress) {

 uint16_t result; // This is the variable where the read data will be saved.

 Wire.beginTransmission(0x11); // This is the I2C Chip Address of the IS4310. Never changes.

 // A Holding Register address is 16-bits long, so we need to write 2 bytes to indicate the address.

 Wire.write((holdingRegisterAddress >> 8) & 0xFF); // Send high 8-bits of the Holding Register Address we want to read.

 Wire.write(holdingRegisterAddress & 0xFF); // Send low 8-bits of the Holding Register Address we want to read.

https://inacks.com/is4310
https://inacks.com/kappa4310ard

IS4310 Modbus RTU Slave

28/40 ISDOC125C, Revised February 2025
 Submit Feedback

 Wire.endTransmission(false);

 // A Holding Register data register is 16-bits long. So we need to read 2 bytes to make a full Holding Register Read:

 Wire.requestFrom(0x11, 2); // From the IS4310, request 2 bytes (2 bytes make a full Holding Register).

 result = Wire.read(); // Read the first byte.

 result = result << 8; // Make space for the second byte.

 result = result | Wire.read(); // Read the second byte.

 return result; // Return the read 16-bit register.

}

void setup() {

 uint16_t ModbusSlaveID;

 Wire.begin(); // Initialize the I2C.

 Serial.begin(9600); // Initialize the Serial for the prints.

 // The Modbus Slave ID is stored in the Holding Register Address 500 of the IS4310, let's read it:

 ModbusSlaveID = readHoldingRegister(500);

 // Let's print the read Modbus Slave ID:

 Serial.println("");

 Serial.print("The Modbus Slave Address is: ");

 Serial.println(ModbusSlaveID);

}

void loop() {

 uint16_t humidity = 47; // Let's imagine a humidity sensor that reads a level of 47% RH.

 // Let's write the humidity to the Holding Register Address 0:

 writeHoldingRegister(0, humidity);

 delay(1000);

}

IS4310 Modbus RTU Slave

29/40 ISDOC125C, Revised February 2025
 Submit Feedback

7.2. STM32 Example

Coding for the IS4310 requires no dedicated library, making it easy to maintain and port to new STM32 or other microcontrollers

The following code is an abstraction of the main.c file from the ISXMPL4310ex9 example. All external HAL routines and function calls have been removed for explanation

proposals.

This example demonstrates:

1. How to read a potentiometer (simulating a sensor) and store its state in Holding Register 0.

2. How to control an RGB LED (simulating an actuator) using GPIO pins based on values in Holding Registers 1, 2, and 3.

You can download the full STM32 project from the IS4310 product page.

This example uses the Kappa4310Ard Evaluation Board. Check the Kappa4310Ard product folder for more information.

uint16_t readHoldingRegister(uint16_t registerAdressToRead) {

 uint8_t IS4310_I2C_Chip_Address; // This variable stores the I2C chip address of the IS4310.

 IS4310_I2C_Chip_Address = 0x11; // The IS4310's I2C address is 0x11.

 // The STM32 HAL I2C library requires the I2C address to be shifted left by one bit.

 // Let's shift the IS4310 I2C address accordingly:

 IS4310_I2C_Chip_Address = IS4310_I2C_Chip_Address << 1;

 // The following array will store the read data.

 // Since each holding register is 16 bits long, reading one register requires reading 2 bytes.

 uint8_t readResultArray[2];

 // This variable will contain the final result:

 uint16_t readResult;

 /*

 * This is the HAL function to read from an I2C memory device. The IS4310 is designed to operate as an I2C memory.

 *

 * HAL_I2C_Mem_Read parameters explained:

 * 1. &hi2c1: This is the name of the I2C that you're using. You set this in the CubeMX. Don't forget the '&'.

 * 2. IS4310_I2C_Chip_Address: The I2C address of the IS4310 (must be left-shifted).

 * 3. registerAdressToRead: The holding register address to read from the IS4310.

 * 4. I2C_MEMADD_SIZE_16BIT: You must indicate the memory addressing size. The IS4310 memory addressing is 16-bits.

 * This keyword is an internal constant of HAL libraries. Just write it.

 * 5. readResultArray: An 8-bit array where the HAL stores the read data.

 * 6. 2: The number of bytes to read. Since one holding register is 16 bits, we need to read 2 bytes.

 * 7. 1000: Timeout in milliseconds. If the HAL fails to read within this time, it will skip the operation

 * to prevent the code from getting stuck.

 */

 HAL_I2C_Mem_Read(&hi2c1, IS4310_I2C_Chip_Address, registerAdressToRead, I2C_MEMADD_SIZE_16BIT, readResultArray, 2, 1000);

 // Combine two bytes into a 16-bit result:

https://inacks.com/is4310
https://inacks.com/kappa4310ard

IS4310 Modbus RTU Slave

30/40 ISDOC125C, Revised February 2025
 Submit Feedback

 readResult = readResultArray[0];

 readResult = readResult << 8;

 readResult = readResult | readResultArray[1];

 return readResult;

}

void writeHoldingRegister(uint16_t registerAdressToWrite, uint16_t value) {

 uint8_t IS4310_I2C_Chip_Address; // I2C address of IS4310 chip (7-bit).

 IS4310_I2C_Chip_Address = 0x11; // IS4310 I2C address is 0x11 (7-bit).

 // STM32 HAL expects 8-bit address, so shift left by 1:

 IS4310_I2C_Chip_Address = IS4310_I2C_Chip_Address << 1;

 // The HAL library to write I2C memories needs the data to be in a uint8_t array.

 // So, lets put our uint16_t data into a 2 registers uint8_t array.

 uint8_t writeValuesArray[2];

 writeValuesArray[0] = (uint8_t) (value >> 8);

 writeValuesArray[1] = (uint8_t) value;

 /*

 * This is the HAL function to write to an I2C memory device. To be simple and easy to use, the IS4310 is designed to operate as an I2C

memory.

 *

 * HAL_I2C_Mem_Write parameters explained:

 * 1. &hi2c1: This is the name of the I2C that you're using. You set this in the CubeMX. Don't forget the '&'.

 * 2. IS4310_I2C_Chip_Address: The I2C address of the IS4310 (must be left-shifted).

 * 3. registerAdressToWrite: The holding register address of the IS4310 we want to write to.

 * 4. I2C_MEMADD_SIZE_16BIT: You must indicate the memory addressing size. The IS4310 memory addressing is 16-bits.

 * This keyword is an internal constant of HAL libraries. Just write it.

 * 5. writeValuesArray: An 8-bit array where we store the data to be written by the HAL function.

 * 6. 2: The number of bytes to write. Since one holding register is 16 bits, we need to write 2 bytes.

 * 7. 1000: Timeout in milliseconds. If the HAL fails to write within this time, it will skip the operation

 * to prevent the code from getting stuck.

 */

 HAL_I2C_Mem_Write(&hi2c1, IS4310_I2C_Chip_Address, registerAdressToWrite, I2C_MEMADD_SIZE_16BIT, writeValuesArray, 2, 1000);

}

while (1) {

 // This will store the potentiometer value:

 uint16_t potentiometerValue;

 // This will store the read value of the Holding Registers 1, 2 and 3:

 uint16_t holdingRegister1;

 uint16_t holdingRegister2;

 uint16_t holdingRegister3;

 // Read Holding Registers 1, 2 and 3:

 holdingRegister1 = readHoldingRegister(1);

 holdingRegister2 = readHoldingRegister(2);

 holdingRegister3 = readHoldingRegister(3);

IS4310 Modbus RTU Slave

31/40 ISDOC125C, Revised February 2025
 Submit Feedback

 // If the value of each read Holding register is different from 0,

 // let's turn on the corresponding LED:

 if (holdingRegister1 >= 1) {

 HAL_GPIO_WritePin(RGB_Red_GPIO_Port, RGB_Red_Pin, GPIO_PIN_SET);

 } else {

 HAL_GPIO_WritePin(RGB_Red_GPIO_Port, RGB_Red_Pin, GPIO_PIN_RESET);

 }

 if (holdingRegister2 >= 1) {

 HAL_GPIO_WritePin(RGB_Green_GPIO_Port, RGB_Green_Pin, GPIO_PIN_SET);

 } else {

 HAL_GPIO_WritePin(RGB_Green_GPIO_Port, RGB_Green_Pin, GPIO_PIN_RESET);

 }

 if (holdingRegister3 >= 1) {

 HAL_GPIO_WritePin(RGB_Blue_GPIO_Port, RGB_Blue_Pin, GPIO_PIN_SET);

 } else {

 HAL_GPIO_WritePin(RGB_Blue_GPIO_Port, RGB_Blue_Pin, GPIO_PIN_RESET);

 }

 /*

 * Read ADC value from potentiometer (0-4095),

 * and write it to Holding Register 0.

 */

 HAL_ADC_Start(&hadc1); // Start the HAL ADC

 HAL_ADC_PollForConversion(&hadc1, 400); // Perform an ADC read

 // Get the ADC value:

 potentiometerValue = HAL_ADC_GetValue(&hadc1);

 // Store the ADC value to the Holding Register 0:

 writeHoldingRegister(0, potentiometerValue);

 // Stop the HAL ADC

 HAL_ADC_Stop(&hadc1);

}

IS4310 Modbus RTU Slave

32/40 ISDOC125C, Revised February 2025
 Submit Feedback

7.3. Raspberry Pi Example

Coding for the IS4310 requires no dedicated library, making it easy to maintain and port to new Raspberry Pi

boards or other single board computers (SBC).

This Python script communicates with the IS4310 Modbus RTU chip via I2C using a Raspberry Pi.

It demonstrates:

1. How to read a push button (simulating a sensor) and store its state in Holding Register 0.

2. How to control an RGB LED (simulating an actuator) using PWM on GPIO pins 12, 13, and 19, based

on values in Holding Registers 1, 2, and 3.

A value of 0 turns off the LEDs, and a value of 100 sets them to maximum brightness.

This example uses the Kappa4310Rasp Evaluation Board. Check the Kappa4310Ard product page for more

information.

You can download the full Raspberry Pi Python project from the IS4310 product page.

IS4310 Modbus Code Example for Raspberry Pi

--

This Python script communicates with the IS4310 Modbus RTU chip via I²C using a Raspberry

Pi.

It demonstrates how to read a push button (simulating a sensor) and store its value in

Holding Register 0.

It also controls an RGB LED (simulating an actuator) using PWM pins 12, 13, and 19, based on

the values in Holding Registers 1, 2, and 3.

A value of 0 turns off the LEDs, and a value of 100 sets them to maximum brightness.

You can test this code using the **Kappa4310Rasp Evaluation Board**.

Buy it at: www.inacks.com/kappa4310rasp

Download the IS4310 datasheet at: www.inacks.com/is4310

from smbus2 import SMBus, i2c_msg

import RPi.GPIO as GPIO

import time

I2C_BUS = 1 # I2C bus number on Raspberry Pi (usually 1)

DEVICE_ADDRESS = 0x11 # 7-bit I2C address of the IS4310 Modbus RTU chip

GPIO.setmode(GPIO.BCM) # Use BCM pin numbering scheme

Define GPIO pins for three LEDs and push button

led_pin1 = 12

led_pin2 = 13

led_pin3 = 19

push_button_pin = 26

Setup push button pin as input with internal pull-down resistor enabled

GPIO.setup(push_button_pin, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

Setup LED pins as outputs

GPIO.setup(led_pin1, GPIO.OUT)

GPIO.setup(led_pin2, GPIO.OUT)

GPIO.setup(led_pin3, GPIO.OUT)

Initialize PWM on LED pins at 1 kHz frequency

pwm1 = GPIO.PWM(led_pin1, 1000)

pwm2 = GPIO.PWM(led_pin2, 1000)

pwm3 = GPIO.PWM(led_pin3, 1000)

Start PWM with 0% duty cycle (LEDs off initially)

pwm1.start(0)

pwm2.start(0)

pwm3.start(0)

def write_register(register, data):

 """

 Write a 16-bit data value to a 16-bit register address on the I2C device.

 :param register: 16-bit register address (split into high and low bytes)

 :param data: 16-bit data to write (split into high and low bytes)

 """

https://inacks.com/kappa4310rasp
https://inacks.com/is4310

IS4310 Modbus RTU Slave

33/40 ISDOC125C, Revised February 2025
 Submit Feedback

 high_addr = (register >> 8) & 0xFF # Extract high byte of register address

 low_addr = register & 0xFF # Extract low byte of register address

 data_high = (data >> 8) & 0xFF # Extract high byte of data

 data_low = data & 0xFF # Extract low byte of data

 # Open I2C bus, send write message: [register high, register low, data high, data low]

 with SMBus(I2C_BUS) as bus:

 msg = i2c_msg.write(DEVICE_ADDRESS, [high_addr, low_addr, data_high, data_low])

 bus.i2c_rdwr(msg)

def read_register(start_register):

 """

 Read a 16-bit value from a 16-bit register address on the I2C device.

 :param start_register: 16-bit register address to read from

 :return: 16-bit integer value read (big-endian)

 """

 high_addr = (start_register >> 8) & 0xFF # High byte of register address

 low_addr = start_register & 0xFF # Low byte of register address

 with SMBus(I2C_BUS) as bus:

 # Write register address first to set internal pointer

 write_msg = i2c_msg.write(DEVICE_ADDRESS, [high_addr, low_addr])

 # Prepare to read 2 bytes from the device

 read_msg = i2c_msg.read(DEVICE_ADDRESS, 2)

 bus.i2c_rdwr(write_msg, read_msg)

 data = list(read_msg) # Read bytes as list of ints

 # Combine high and low bytes into 16-bit integer (big-endian)

 value = (data[0] << 8) | data[1]

 return value

try:

 while True:

 # Read push button state (0 or 1)

 button_value = GPIO.input(push_button_pin)

 # Write button state to register 0 of the device

 write_register(0, button_value)

 # Read PWM values from registers 1, 2, and 3

 pwm_val1 = read_register(1)

 pwm_val2 = read_register(2)

 pwm_val3 = read_register(3)

 # Cap PWM values at max 100 to avoid invalid duty cycles

 if pwm_val1 > 100:

 pwm_val1 = 100

 if pwm_val2 > 100:

 pwm_val2 = 100

 if pwm_val3 > 100:

 pwm_val3 = 100

 # Calculate duty cycles by inverting the PWM value (100 - value)

 # abs() used to ensure positive duty cycle, just in case

 duty1 = abs(pwm_val1 - 100)

 duty2 = abs(pwm_val2 - 100)

 duty3 = abs(pwm_val3 - 100)

 # Print duty cycle values for debugging (tab-separated)

 print(f"{duty1}\t{duty2}\t{duty3}")

 # Update PWM duty cycles to control LED brightness

 pwm1.ChangeDutyCycle(duty1)

 pwm2.ChangeDutyCycle(duty2)

 pwm3.ChangeDutyCycle(duty3)

 # Small delay to avoid excessive CPU load

 time.sleep(0.05)

except KeyboardInterrupt:

 # Gracefully handle Ctrl+C exit

 print("Exiting...")

finally:

 # Stop all PWM signals and cleanup GPIO pins on exit

 pwm1.stop()

IS4310 Modbus RTU Slave

34/40 ISDOC125C, Revised February 2025
 Submit Feedback

 pwm2.stop()

 pwm3.stop()

 GPIO.cleanup()

IS4310 Modbus RTU Slave

35/40 ISDOC125C, Revised February 2025
 Submit Feedback

8. Modbus Software Tools
The following third-party software options are provided for reference only. These applications are not developed,

maintained, or endorsed by INACKS. We do not guarantee their functionality, compatibility, or compliance with the

Modbus standard. Users should evaluate and choose software based on their specific needs.

To test the Modbus RTU device you're developing with the IS4310, we recommend the following Modbus software

tools:

qModMaster

Description: QModMaster is a free Modbus master application.

The graphical user interface provides a simple and intuitive way to work with
the Holding Registers.

It also supports both RTU and TCP/IP communication, and includes a bus
monitor for examining all traffic on the bus

Link: https://sourceforge.net/projects/qmodmaster/

Captures: Main window:

Setting the RTU Serial configuration:

https://sourceforge.net/projects/qmodmaster/

IS4310 Modbus RTU Slave

36/40 ISDOC125C, Revised February 2025
 Submit Feedback

9. Mechanical

IS4310 Modbus RTU Slave

37/40 ISDOC125C, Revised February 2025
 Submit Feedback

IS4310 Modbus RTU Slave

38/40 ISDOC125C, Revised February 2025
 Submit Feedback

Content

IS4310: I2C Modbus RTU Slave Stack 1

Product Selection Guide .. 2

1. Electrical Specifications 3

2. Detailed Description ... 4

2.1. IS4310 Description 4

2.1.1. Function Codes 5

2.1.2. Exception Codes 5

2.2. IS4310 Advantages 5

2.3. Modbus UART Port 6

3. Pin Description ... 7

4. Memory Description ... 9

4.1. Memory Map Organization 9

4.2. Memory Map Table 10

4.3. HOLDx Registers 11

4.4. MBADR Register 12

4.5. MBBDR Register 13

4.6. MBPAR Register 14

4.7. MBSTP Register .. 15

5. I2C-compatible Bus Description 16

5.1. Overview.. 16

5.2. Read Operations 17

5.2.1. Single Word Read 17

5.2.2. Multiple Word Read............................. 18

5.3. Write Operations .. 19

5.3.1. Single Word Write................................ 19

5.3.2. Multiple Word Write 20

6. Hardware Implementation Guide 21

6.1. RS485 Example ... 21

6.2. Isolated RS485 Example 23

6.3. RS232 Example ... 24

6.4. Bus Topology ... 25

6.5. Cable Wiring .. 26

7. Firmware Implementation Guide 27

7.1. Arduino Example .. 27

7.2. STM32 Example .. 29

7.3. Raspberry Pi Example 32

8. Modbus Software Tools 35

9. Mechanical ... 36

Content ... 38

Appendix .. 39

Revision History .. 39

Documentation Feedback 39

Sales Contact .. 39

Customization ... 39

Trademarks ... 39

Disclaimer ... 40

IS4310 Modbus RTU Slave

39/40 ISDOC125C, Revised February 2025
 Submit Feedback

Appendix

Revision History

Date Revision Code Description

June 2025 ISDOC125C - Added “Firmware Implementation Guide” section.
- Updated pictures from “Product Selection Guide” section.
- Typo in the MBBDR Register section: “Name” field was incorrectly written as

“MBADD” and has been corrected to “MBBDR”.
- Added “Modbus Software Tools” section.

February 2025 ISDOC125B - Added “Cable Wiring” section.

February 2025 ISDOC125A - Initial Release

Documentation Feedback

Feedback and error reporting on this document are very much appreciated.

Sales Contact

For special order requirements, large volume orders, or scheduled orders, please contact our sales department at:

Customization

INACKS can develop new products or customize existing ones to meet specific client needs. Please contact our

engineering department at:

Trademarks

This company and its products are developed independently and are not affiliated with, endorsed by, or associated

with any official protocol or standardization entity. All trademarks, names, and references to specific protocols

remain the property of their respective owners.

IS4310 Modbus RTU Slave

40/40 ISDOC125C, Revised February 2025
 Submit Feedback

Disclaimer
Limited warranty and liability — Information in this document is

believed to be accurate and reliable. However, INACKS does not

give any representations or warranties, expressed or implied, as to

the accuracy or completeness of such information and shall have no

liability for the consequences of use of such information. INACKS

takes no responsibility for the content in this document if provided

by an information source outside of INACKS.

In no event shall INACKS be liable for any indirect, incidental,

punitive, special or consequential damages (including - without

limitation - lost profits, lost savings, business interruption, costs

related to the removal or replacement of any products or rework

charges) whether or not such damages are based on tort (including

negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any

reason whatsoever, INACKS’s aggregate and cumulative liability

towards customer for the products described herein shall be limited

in accordance with the Terms and conditions of commercial sale of

INACKS.

Right to make changes — INACKS reserves the right to make

changes to information published in this document, including without

limitation specifications and product descriptions, at any time and

without notice. This document supersedes and replaces all

information supplied prior to the publication hereof.

Suitability for use — INACKS products are not designed, authorized

or warranted to be suitable for use in life support, life-critical or

safety-critical systems or equipment, nor in applications where

failure or malfunction of an INACKS product can reasonably be

expected to result in personal injury, death or severe property or

environmental damage. INACKS and its suppliers accept no liability

for inclusion and/or use of INACKS products in such equipment or

applications and therefore such inclusion and/or use is at the

customer’s own risk.

Quick reference data — The Quick reference data is an extract of

the product data given in the Limiting values and Characteristics

sections of this document, and as such is not complete, exhaustive

or legally binding.

Applications — Applications that are described herein for any of

these products are for illustrative purposes only. INACKS makes no

representation or warranty that such applications will be suitable for

the specified use without further testing or modification.

Customers are responsible for the design and operation of their

applications and products using INACKS products, and INACKS

accepts no liability for any assistance with applications or customer

product design. It is customer’s sole responsibility to determine

whether the INACKS product is suitable and fit for the customer’s

applications and products planned, as well as for the planned

application and use of customer’s third party customer(s).

Customers should provide appropriate design and operating

safeguards to minimize the risks associated with their applications

and products.

INACKS does not accept any liability related to any default, damage,

costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by

customer’s third party customer(s). Customer is responsible for

doing all necessary testing for the customer’s applications and

products using INACKS products in order to avoid a default of the

applications and the products or of the application or use by

customer’s third party customer(s). INACKS does not accept any

liability in this respect.

Limiting values — Stress above one or more limiting values (as

defined in the Absolute Maximum Ratings System of IEC 60134) will

cause permanent damage to the device. Limiting values are stress

ratings only and (proper) operation of the device at these or any

other conditions above those given in the Recommended operating

conditions section (if present) or the Characteristics sections of this

document is not warranted. Constant or repeated exposure to

limiting values will permanently and irreversibly affect the quality

and reliability of the device.

Terms and conditions of commercial sale — INACKS products are

sold subject to the general terms and conditions of commercial sale,

as published at http://www.inacks.com/comercialsaleterms, unless

otherwise agreed in a valid written individual agreement. In case an

individual agreement is concluded only the terms and conditions of

the respective agreement shall apply. INACKS hereby expressly

objects to applying the customer’s general terms and conditions with

regard to the purchase of INACKS products by customer.

No offer to sell or license — Nothing in this document may be

interpreted or construed as an offer to sell products that is open for

acceptance or the grant, conveyance or implication of any license

under any copyrights, patents or other industrial or intellectual

property rights.

Export control — This document as well as the item(s) described

herein may be subject to export control regulations. Export might

require a prior authorization from competent authorities.

Non-automotive qualified products — This INACKS product is not

suitable for automotive use. It is neither qualified nor tested in

accordance with automotive testing or application requirements.

INACKS accepts no liability for inclusion and/or use of non-

automotive qualified products in automotive equipment or

applications.

Protocol Guidance Disclaimer: The information provided herein

regarding the protocol is intended for guidance purposes only. While

INACKS strive to provide accurate and up-to-date information, this

content should not be considered a substitute for official protocol

documentation. It is the responsibility of the client to consult and

adhere to the official protocol documentation when designing or

implementing systems based on this protocol.

INACKS make no representations or warranties, either expressed

or implied, as to the accuracy, completeness, or reliability of the

information contained in this document. INACKS shall not be held

liable for any errors, omissions, or inaccuracies in the information or

for any user’s reliance on the information.

The client is solely responsible for verifying the suitability and

compliance of the provided information with the official protocol

standards and for ensuring that their implementation or usage of the

protocol meets all required specifications and regulations. Any

reliance on the information provided is strictly at the user’s own risk.

Certification and Compliance Disclaimer: Please be advised that the

product described herein has not been certified by any competent

authority or organization responsible for protocol standards.

INACKS do not guarantee that the chip meets any specific protocol

compliance or certification standards.

It is the responsibility of the client to ensure that the final product

incorporating this product is tested and certified according to the

relevant protocol standards before use or commercialization. The

certification process may result in the product passing or failing to

meet these standards, and the outcome of such certification tests is

beyond our control.

INACKS disclaim any liability for non-compliance with protocol

standards and certification failures. The client acknowledges and

agrees that they bear sole responsibility for any legal, compliance,

or technical issues that arise due to the use of this product in their

products, including but not limited to the acquisition of necessary

protocol certifications.

	IS4310: I2C Modbus RTU Slave Stack
	Product Selection Guide
	1. Electrical Specifications
	2. Detailed Description
	2.1. IS4310 Description
	2.1.1. Function Codes
	2.1.2. Exception Codes

	2.2. IS4310 Advantages
	2.3. Modbus UART Port

	3. Pin Description
	4. Memory Description
	4.1. Memory Map Organization
	4.2. Memory Map Table
	4.3. HOLDx Registers
	4.4. MBADR Register
	4.5. MBBDR Register
	4.6. MBPAR Register
	4.7. MBSTP Register

	5. I2C-compatible Bus Description
	5.1. Overview
	5.2. Read Operations
	5.2.1. Single Word Read
	5.2.2. Multiple Word Read

	5.3. Write Operations
	5.3.1. Single Word Write
	5.3.2. Multiple Word Write

	6. Hardware Implementation Guide
	6.1. RS485 Example
	6.2. Isolated RS485 Example
	6.3. RS232 Example
	6.4. Bus Topology
	6.5. Cable Wiring

	7. Firmware Implementation Guide
	7.1. Arduino Example
	7.2. STM32 Example
	7.3. Raspberry Pi Example

	8. Modbus Software Tools
	9. Mechanical
	Content
	Appendix
	Revision History
	Documentation Feedback
	Sales Contact
	Customization
	Trademarks
	Disclaimer

