e TP16
] 'GND ON

INPUT %8 = B oo s

Pighs P42 :
=42 2 Pico Video

© 2024 REV 2

POEOOOOOO0O0OO0OOO0
R X

Pier42 Pico-Video4 Rev2.0

Designed by Wolfgang Friedrich
© 2026 by Pier42 Electronics Design
https://hackaday.io/project/196770-rpi-pico-video4

https://www.tindie.com/products/pierd2/rpi-pico-rp2040-4x-video-palntsc-board/

https://hackaday.io/project/196770-rpi-pico-video4
https://www.tindie.com/products/pier42/rpi-pico-rp2040-4x-video-palntsc-board/

Table of Contents

L] o] LR oL A e 1 =Y o1 £ TRTRTRTI 2
Tod oo 0ol dTe] o H OSSP UPSUTSRRTI 4
[T VT TSP 5
Video channel Mapping ..., 5
N (oo o 11 W 4 g =1 o] o1 o= 200U PPPPPT PP 5
1@ o1 ol UL £ PP PP P P PP PP PP PP PPPPPPPPPPPPPPPRt 6
Y Lo TN =T Lo Lo = OO PP PP TP PPPPURPPPP 6
Y Lo TN T=F Lo [T = £SO PP P PP PPPPURPPPP 7
[T oIV =T 45 Vo] o TRt 7
V=10 To] AV - o J PO PPPPPRUPPPRRPPRt 7
Program FLASH with character bitmap.........eeeiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e eaeeeeraaraee 7
F AN e [T o T N A=Y = = o] o U UUPRNE 9
NYeT 140 T T OO OSSPSR 9
LT o] [V 4o o[- PP UPPPP R RPPPP 9
(60] 0151 7211 £SO PP PPPR T PPUPPPIRY 10
(00] o] g - | 11 (TP 10
o R 1ol WA e 1Yo i3 U o Yot o] o - PP PPPPPPPRt 10
Library Control FUNCtions VS23S040.10/.CPP ..eceererieiiiriieeeeitieeeeeireeeeeeteeeeeeitreeeesetreeeeeeeaveeeeenareeeeenns 11
oA D TEy o] = Y SR 11

Config ()11
Y LT o LT T SRS 11
SPIREAAREGISTEILO () .uvvvrreeeeeeeiiurrreeeeeeeeiiiitrreeeeeeeiiitrreeeeeesssstttaaeeaeessassttaseeeeessaastssaseeeeesaansrraeeseeens 12
Y AT e =Y e (= ol (PO 12
Y NV = 2= 1 =Y o 12
SPIWIEEREGISTEI32 () ceeeeeee e 13
SPIWFILEREZISTEIA0 () .evvveeeeeeeriiiiiiieeeeeeriiiiit et e e e s sttt e et e e e e s ssabbeaeeeeessssabbbeaeeeeesassabbbaaaeaessssnsbbaneeaeesss 13
SPIREAABYLE () coeeeeeeeeeieeiee e 14
N e 1 YCE Lo LTV T e I | T PO PP PP UPPPPPPP 14
SPIWIIEEBYLE () coeeeeeeeeeeeee e, 14
SPIWFIEEWOI ()eeeeeeuiiriiiieeeieeiiiit et e e e e e sttt e e e s sttt e et e e e e s sttt eaeaeeessaabbbeaeaeeesssnssbbaaeeaeesssnanttaeeaaeenns 15
Library Graphics functions VS23S040.h/.CPP ...cvvrreiiiiiieeiiiieeeesctreee e sretree e e siree e s sereeessnnsaeeessnnaeesenns 15
ClEAISCIEEN () coeeeeeeee e, 15
1 ITe L t=Tot = oY ={ L PP PPPPPPN 15
SEERGBPIXEI () 1+ vveveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeesseeeseeeeeseseeeeeeseseseeeeseseeseaeeesseeeeseestaseeseesseeesessseneereees 16
SEEYUVPIXEI () 1eeeeeeieiiiiiieee et eeiiit ettt e e e ettt et e e e st te e e e e e e s ss bt eeeeaeeessasbbbaeeeaeeessasbbeaeeaeessanastaaeeaaaenns 16

T o O =Tl PP PPPPPPPPPPPPPRt 17

Ao Y] A T T= 2 ISR PPPPP 17

O] R DY = ol o - 1 o I (PSPPI PRPPPP 18
DisPlayBMPFErOMEFIASH () «eeeeueieeiiiiiee ettt ettt et e it e e sttt e e e st e e e e sabae e e s eabbeeesnabeeens 18

Library functions ImageFlashWrite.h/.CPpP.....cccuriii ittt e raee e 18

Y [0 T=T o To 18T o To X § OO PO PP PTUTUPTROTPPRN 18

T DOWNIOAAIMAEE () c-vvveeeennrreeeiiiiee et ee ettt e ettt e e sttt e e e s atteeesrabteeestbeeessabaeeesssbaeeeansbaeessnbeeessabeeeennns 19
f_DOWNIOAACONVEITIMAEZE () +eeeeuvrreeeiirieeeiiieeeeitee e sttt e ettt e e sttt e e e sttt e e e sbbeeessabeeeesnbaeessbbeeessabaeeennns 19
SPIMEMSECLOTEIase () oceeeeeeeieieeeieei e 20

YUV PAlEEEE ..ot e 21
8-Bit Default Palettecciiiiiiiiiiiiii 21
NTSC/PAL COlOr CONVEISION TOOI vovvvvviiiiiiiiiiiiiiiiieiiiieiteeeeieteeeseeeeeessassassassssasssssssssssssssssssssssssssssssssees 21

Ve [eTo Iy f=d o =1 [o] 0 0 F= 14 o) TP O SROE 22

VR o] d L @o] 1] 1 o | F OO 24

Introduction

The Pico Video4 Display is a stand-alone RaspberyPi plco board.

This board provides up to 4 analog composite video display interfaces with integrated frame buffer memory
accessible through SPI. The 4 video outputs are accessible through 1 RCA connector and 1 VGA DB15-HD
connector that uses the red, green and blue channels for the composite signal.

PAL and NTSC output formats are supported; display resolutions range from 320x200 with 65536 colours up
to 720x576 with reduced colour count. It can be ordered as NTSC version with a 3.579545 MHz crystal or as
PAL version with 4.43618 MHz crystal. Currently 2 resolutions are implemented: NTSC 320x200 with 256
colours or PAL 300x240 with 256 colours. The heart of this design is the VLSI VS235040 chip, which is able to
output 4 composite video with resolutions from 320x200 in 65536 colours to 720x576 in 4 colours. The chip
has a 1Mbit framebuffer per channel, unused memory can be used for graphics tiles, which can be copied
into the image data by the internal fast memory block move hardware.

A 16 Mbit SPI FLASH memory is available on-board. It is pre-loaded with a character bitmap consisting of 94
characters (ASCII code 33-126), a vintage Amiga Boing Ball demo, and 9 images ready to display.

It has 8 inputs that are voltage compatible to the input voltage; 5 V when powered from USB-C and up to 12
V when powered from the barrel connector or screw terminal.

Specifications:

e Operating supply voltage 5.0 V-12V

e Raspberry Pi Pico with 16 Mbit Program Flash memory

e USB-C connector for 5 V power and communication/programming

e SWdebug header

e 4x Composite Video Output

e Maximum resolution 720x576 in 4 colours

e Implemented resolutions: NTSC 320x200 or 426x200 with 256 colours and PAL 300x240 or 500x240
with 256 colours

e Crystal: NTSC 3.579545 MHz or PAL 4.43618 MHz

e Communication interface: SPI up to 38 MHz

e Video Frame Buffer: 4x 1 Mbit = 4x 128 KByte

e Data Flash: 16 Mbit = 2 Mbyte

e QWIICI2C connector vertical orientation

e 8inputs, high voltage up to input voltage level 5-12 V, with LED indicator

o 8 dip switches to simulate the inputs

e LED and 2-pin jumper for status and control

e Power output, switched and fused with 500mA polyfuse

e TH prototyping area

e Sjze: 85mm x 100mm (3.3" x 3.9")

Hardware

Video channel mapping

The 4 video channels of the V5235040 are mapped as following:

Video Channel

Hardware Mapping

0 RCA port
1 VGA blue
2 VGA green
3 VGA red
RPi Pico pin mapping
Function RPI GPIO port Alt. Function Note
IN1Pin 13
IN2Pin 12
IN3Pin 11
IN4Pin 10
IN5Pin 9
IN6Pin 8
IN7Pin 7
IN8Pin 6
OUTPin 5
OUTLED 27
ENABLE 26
TP6 29 UARTO RX/ADC3
TP7 28 UARTO TX/ADC2
TP8 25 UART1 RX
TP13 2 12C1 SDA
TP14 12C1 SCL
TP15 UART1 TX
GP1015 15 Bottom side on PCB rev1
GP1021 21 Bottom side on PCB rev1
GP1022 22 Bottom side on PCB rev1
QWIIC_SCL 1 UARTO RX J8 (pins 3 and 4 are swapped)
QWIIC_SDA 0 UARTO TX J8 (pins 3 and 4 are swapped)

From the table GPIOs are through holes, wires can easily soldered to them. All adjacent holes are on a
2.54mm grid. TP 15, 21, 22 are just pads on the bottom side, wires could be soldered as well. J8 is a QWIIC
connector, but | messed up the pinout, pins 3 and 4 are switched. Infos can be found here:

Sparkfun QWIIC

Most GPIOs have more interface functions or can also be used as PWM / SIO (single-cycle 10) / PIO
(programmable 10). The datasheet tells all the details or here is a good summary:

GPIO Function Matrix

[0 circuits

Input circuit:
+3V3

IN1

Output power circuit:

+12V Q18 F1 TgﬁTO
DMP3099L 100mA
e cout 1 10
)3 & [
— . D23 D24 = | 12V_0UT
. Red 15V
] R72
R71 LKT
1KO
M)
ouT _ 1 Q17
OuTh BSS138
R70 ™~

47K0

More heading

https://www.sparkfun.com/qwiic
https://www.circuitstate.com/pinouts/raspberry-pi-pico-rp2040-microcontroller-board-pinout-diagrams/#GPIO_Function_Matrix

More headings

Flash Memory

Memory Map

By default the 16 Mibit (2 MiByte) Flash memory is used as follows:

Memory Bytes

Description

0-751

752 - 4095

4096 - 12287
12287 - 131071
131072 - 262143
262143 - 393215
393216 - 524287
524288 - 655359
655786 - 786431
786432 - 917503
719504 - 1048575
1048576 - 1179647
1179648 - 1310719
1310719 - 2097151

0x00000-0x002EF
0x002F0-OxO0FFF
0x01000-0x02FFF
0x03000-0x1FFFF
0x20000-0x3FFFF
0x40000-0x5FFFF
0x60000-0x7FFFF
0x80000-0x9FFFF
O0xA0000-OxBFFFF
0xCO000-OxDFFFF
OxEOO000-OxFFFFF
0x100000-0x11FFFF
0x120000-0x13FFFF
0x140000-0x1FFFFF

94 |letters each 8 byte

empty

8 frames 32x32 byte for BoingBall demo
BMP image for picture demo or logo for Input demo
Image #1

Image #2

Image #3

Image #4

Image #5

Image #6

Image #7

Image #8

Image buffer for colour conversion

free

Program FLASH with character bitmap

See https://hackaday.io/project/21097/instructions for details.

Here is am ASCII character table for the symbols programmed in Flash by default

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
33 21 ! 57 39 9 81 51 Q 105 69 i
34 22 “ 58 3A 82 52 R 106 6A j
35 23 # 59 3B 83 53 S 107 6B k
36 24 S 60 3C < 84 54 T 108 6C I
37 25 % 61 3D = 85 55 u 109 6D m
38 26 & 62 3E > 86 56 v 110 6E n
39 27 ! 63 3F 87 57 W 111 6F o)

https://hackaday.io/project/21097/instructions

O T &« » + 35 > =2 X > N = — —~ 2
O 4 N OO & 10D O N 0 O < ;0 O 0O w
N NNNMNBKNBKMNRKNMNNMNNKNRKRKRDNS
N M < N ON 00O o N M S NN W
A+ 4 H A Hd A d NN NN~
= RS TR I I R B B B B B
X > N — — — < |- ®© © O T O 4+ b <
0 0O < @ O O W ww O od N m < 1 O s
N 1D 1 I O In 1IN 1IN © © © © © © © v ©
O o N o <
0 O O = N N S N W I 0 D
b I IR NS R < W= = B~ N < N N < B T B B
@ <« m U O W uw O I — - ¥ a0 > =2 0 a
O 9 N OO < 1D O N 0 O < o OO ww o
A5 S S S S S S S R S SRS S S S T}
S N ON 0 O O d N ™M < I © NN 0 O O
O W VW VW © O RKRNMNMNNMNMNBNNKNDMNNNIMNO®
— O % 4+ o~ ~ O < N N < 10 O N~
0 O < M U O WW o o4 o m < 1 O N 00
N &N NN~ NN MO ®OHO®OH 6O O OO0
O = N O < 1D O NN 0 O O o &N M < 1 O
< 5 F Y S S DD N NN N wn

Arduino Integration

What to do for programming the board with Arduino IDE 2.3:

Follow:

https://arduino-pico.readthedocs.io/en/latest/install.html#installing-via-arduino-boards-manager

Software

Resolutions

Currently implemented are

e PAL 300x240 8bit
e PAL 500x240 8bit
e NTSC320x200 8bit
e NTSC426x200 8bit
How to select an implemented resolution, please see chapter “Config ()” on page 11.

Possible Resolutions are (copied from the VLSI VS235040 datasheet):

| Resolution | H | V [Pixels [Colors?® | Bits per pixel | Memory bytes |
NTSC YUV422 2 352 | 240 | 84480 65536 8+4 126720
MCGA 320 | 200 | 64000 65536 16 128000
K)DG 300 | 216 | 64800 65536 16 129600
QVGA 320 | 240 | 76800 8192 13 124800
NTSC VCD 352 | 240 | 84480 4096 12 126720
PAL VCD 352 | 288 | 101376 | 1024 10 126720
NTSC noninterlaced | 440 | 243 | 106920 | 512 9 120285
PAL noninterlaced 520 | 288 | 149760 | 128 7 131040
HVGA 480 | 320 | 153600 | 64 6 115200
EGA 640 | 350 | 224000 | 16 4 112000
VGA letterbox 640 | 400 | 256000 | 16 4 128000
NTSC Analog 440 | 486 | 213840 | 16 4 106920
NTSC SVCD 480 | 480 | 230400 | 16 4 115200
NTSC DVD 720 | 480 | 345600 | 8 3 129600
VGA 640 | 480 | 307200 | 8 3 115200
PAL Analog 520 | 576 | 299520 | 8 3 112320
PAL SVCD 480 | 576 | 276480 | 8 3 103680
PAL DVD 720 | 576 | 414720 | 4 2 103680

https://arduino-pico.readthedocs.io/en/latest/install.html#installing-via-arduino-boards-manager

Implementation of the current resolutions was greatly supported by VLSI Solutions
http://www.vlsi.fi/en/home.html as part of demo code for the V5$235S010D-L chip.

For more information see:
http://www.vsdsp-forum.com/phpbb/viewforum.php?f=14
http://www.vlsi.fi/en/products/vs23s010.html
https://webstore.vlsi.fi/epages/visi.sf/en GB/?ObjectID=13893093

Constants

The following constants are provided by the library. They are useful to make the code adapting to other
resolutions.

Name Description
XPIXELS | | X size of the picture area |
YPIXELS | | Y size of the picture area |

Color Palette

The colour palette is defined as part of the controller configuration. It is described in good detail by a series
of forum posts on the VLS| website:

Nice color palettes for V5235010 TV-Out

Understanding Protolines and Line Pointers

Also a handy table to pick colours by their 8 bit YUV value is located in chapter “8-Bit Default Palette”

P42 Pico _Video4 Functions

COM Port Terminal set to 19200 baud, 8N1, transmit CR only

w[1-8]Write Image into Buffer 1-8

woe Write Logo Image into Memory 128x128 px~2

i[1-8] Colour convert and write Image into Buffer 1-8

io Colour convert and write Logo Image into Memory 128x128 px~2
s[0-8] Show Image[©-8] on screen

m[0-8] Show Memory Dump of Image[©-8] 'x':Exit 'anykey':next page
d[0-9]Delete memory section of Image[0-9]

C Clear Screen

v Show Version

? This help command

http://www.vlsi.fi/en/home.html
http://www.vsdsp-forum.com/phpbb/viewforum.php?f=14
http://www.vlsi.fi/en/products/vs23s010.html
https://webstore.vlsi.fi/epages/vlsi.sf/en_GB/?ObjectID=13893093
http://www.vsdsp-forum.com/phpbb/viewtopic.php?f=14&t=1813
http://www.vsdsp-forum.com/phpbb/viewtopic.php?f=14&t=1829

Library Control Functions VS23S040.h/.cpp

P42Display ()

Board and SPI interface configuration.

Pin Pin Nr Direction Default Description

MVBLK In X Ready signal after Block Move Command

nWP Out High Write Protect for Flash Memory and
Video Controller

nHOLD Out High Hold signal for SPI interface

nMemSelect Out High SPI Select for Flash Memory

nSlaveSelect Out High SPI Select for Video Controller

Config ()

Full configuration of the video controller including protolines, picture lines and video resolution.

word Config(byte channel);

Value Size Description
channel byte Channel # to be configured, can be from 0 to 3
return value word | Content of the Device ID register for the selected channel

Example: Configure channel 0
Result = P42Display.Config (CHe);

The resolution is set in the V5235040D.h file by removing the comment of the desired resolution:

// *** Select Video Resolution here ***
#tdefine NTSC320x200
//#define PAL300x240

Here NTSC320x200 is selected.

SPIReadRegister ()

Read an 8bit register value from the video controller.

byte SPIReadRegister (byte address, boolean debug);

Value Size Description
address byte Opcode of the video controller command, also called register address
debug boolean | Define if the address and return value will be written to a serial

debug port. The debug port needs to be configured in the setup()
routine, e.g. Serial.begin(115200);

return value | byte | Result of the read command

Example: Read Manufacturer and Device ID register (8bit)
Result = P42Display.SPIReadRegister (ReadDeviceID, true);
= Result will be 0x2B.

Debug output will be: "SPIl address: 0x9F : 0x2B”

SPIReadRegister16 ()

Read a 16bit register value from the video controller.
word SPIReadRegisterl6 (byte address, boolean debug);

Value Size Description
address byte Opcode of the video controller command, also called register address
debug boolean | Define if the address and return value will be written to a serial debug

port. The debug port needs to be configured in the setup() routine,
e.g.Serial.begin(115200);

return value byte Result of the read command

Example: Read Manufacturer and Device ID register (16bit)

Result = P42Display.SPIReadRegister (ReadDevicelD, false);
= Result will be 0x2B00.

No debug output.

SPIWriteRegister ()

Write an 8bit value to a register in the video controller.
void SPIWriteRegister (byte address, byte value, boolean debug);

Value Size Description

address byte Opcode of the video controller command, also called register address

value byte Register value to be written into the given register address

debug boolean | Define if the address and register value will be written to a serial debug
port. The debug port needs to be configured in the setup() routine, e.g.
Serial.begin(115200);

Example: Write GPIO Control Register
P42Display.SPIWriteRegister(WriteGPIOControl, PIO4Dir | PIO4High, false);

SPIWriteRegister16 ()

Write a 16bit value to a register in the video controller.
void SPIWriteRegisterl6 (byte address, word value, boolean debug);

Value Size Description

address byte Opcode of the video controller command, also called register address

value word Register value to be written into the given register address

debug boolean | Define if the address and register value will be written to a serial debug
port. The debug port needs to be configured in the setup() routine, e.g.
Serial.begin(115200);

Example: Write left limit of visible picture
SPIWriteRegisterl6 (WritePictureStart, STARTPIX-1, false);

SPIWriteRegister32 ()

Write a 32bit value to a register in the video controller.

void SPIWriteRegister32 (byte address, unsigned long value, boolean debug);

Value Size Description
address byte Opcode of the video controller command, also called register address
value unsigned | Register value to be written into the given register address
long
debug boolean | Define if the address and register value will be written to a serial debug
port. The debug port needs to be configured in the setup() routine, e.g.
Serial.begin(115200);

Example: Write microcode
SPIWriteRegister32 (WriteProgram, ((OP4 << 24) | (OP3 << 16) | (OP2 << 8) | (OP1)), false);

SPIWriteRegister40 ()

Write a 40bit value to a register in the video controller. The 40bit value is split into 2x 16bit plus one 8bit
parameter for a more intuitive and readable code. Only the ‘Block Move Control 1’ register is 40bit wide, so
the parameters are conveniently named for the register only.

void SPIWriteRegister4@ (byte address, word source, word target, byte control, boolean debug);

Value Size Description

address byte Opcode of the video controller command, also called register address

source word | Source memory address for the block move command

target word | Target memory address for the block move command

control word | Control bits for block move and DAC output

debug boolean | Define if the address and register value will be written to a serial debug
port. The debug port needs to be configured in the setup() routine, e.g.
Serial.begin(115200);

Example: Enable PAL Y lowpass filter
SPIWriteRegister4® (WriteBlockMoveControll, 0x0000, 0x0000, BMVC_PYF, false);

SPIReadByte ()

Read an 8bit value from the SRAM video buffer memory in the video controller.

byte SPIReadByte (byte channel, unsigned long address);

Value Size Description
channel byte Channel # to be configured, can be from 0 to 3
address unsigned | video buffer memory address

long
return value byte Result of the read command

Example: Read address O from channel 1
Bytel = SPIReadByte (CH1, ©x00000000);

SPIReadWord ()

Read a 16bit value from the SRAM video buffer memory in the video controller.

word SPIReadByte (byte channel, unsigned long address);

Value Size Description

channel | byte | Channel # to be configured, can be from 0 to 3 | |

address unsigned | video buffer memory address ‘ ‘
long

return value | word | Result of the read command

Example: Read address 0 from channel 2
Wordl = SPIReadWord (CH2, ©x00000000);

SPIWriteByte ()

Write an 8bit value to the SRAM video buffer memory in the video controller.

void SPIWriteByte (byte channel, unsigned long address, byte value, boolean debug);

Value Size Description
channel byte Channel # to be configured, can be from 0 to 3
address unsigned | video buffer memory address
long
value byte Data value to be written into the given memory address
debug boolean | Define if the address and memory value will be written to a serial debug

port. The debug port needs to be configured in the setup() routine, e.g.
Serial.begin(115200);

Example: Write a YUV data value to a specific x,y coordinate to channel 3
SPIWriteByte (CH3, PICLINE_BYTE_ADDRESS(y) + X, YUVdata, false);

SPIWriteWord ()

Write a 16bit value to the SRAM video buffer memory in the video controller.

void SPIWriteWord (byte channel, unsigned long address, word value, boolean debug);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

address unsigned | video buffer memory address

long

value word Data value to be written into the given memory address

debug boolean | Define if the address and memory value will be written to a serial debug
port. The debug port needs to be configured in the setup() routine, e.g.
Serial.begin(115200);

Example: Clear entire video buffer channel 0 memory (everything not only the picture data area!)

for (i=0; i < 65536; i++)
SPIWriteWord (CHO, i, 0x0000, false);

Library Graphics functions VS23S040.h/.cpp

ClearScreen ()

Clear the video screen by filling the framebuffer memory with a given colour value. The colour can be picked
from the default colour table in chapter “8-Bit Default Palette”.

void ClearScreen (byte channel, byte colour);

Value Size Description
channel byte Channel # to be configured, can be from 0 to 3
colour byte YUV colour value picked from default palette

Example: Clear screen and set to a light blue background colour for channel 0.
P42Display.ClearScreen (CHO, ©x5c);

FilledRectangle ()

Draw a filled rectangle into the video buffer. This function was re-used from the Arduino demo provided by
VLSI. See here for details: http://www.vsdsp-forum.com/phpbb/viewtopic.php?f=14&t=2172

The colour can be picked from the default colour table in chapter “8-Bit Default Palette”.

http://www.vsdsp-forum.com/phpbb/viewtopic.php?f=14&t=2172

void FilledRectangle (byte channel, u_int16 x1, u_intl6 y1, u_intl1l6 x2, u_int16 y2, u_intl6 color);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

x1 u_intl6 | x coordinate of top left corner of the rectangle

yl u_intl6 | y coordinate of top left corner of the rectangle

X2 u_intl6 | x coordinate of bottom right corner of the rectangle

y2 u_intl6 | y coordinate of top bottom right of the rectangle

color u_intl6 | YUV colour value picked from default palette. Only the lower 8 bit are used
for colour information.

Example: Draw a 10 pixel by 10 pixel square in the top left corner of the screen in yellow colour on channel 0.
P42Display.FilledRectangle (CHe, @, @, 9, 9, OxBF);

SetRGBPixel ()

This is an experimental function and should not be used for now. Eventually it will perform a RGB-to-YUV
conversion depending on the colour space of the given colourspace.

Draw a pixel on the screen at the given coordinates.

The colour is a 32 bit unsigned integer of the format 0OXOORRGGBB representing a 24bit RGB value.

void SetRGBPixel (byte channel, word x, word y, unsigned long colour);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

X word x coordinate of the pixel

y word y coordinate of the pixel

colour unsigned | 32 bit unsigned integer of the format 0OXOORRGGBB representing a 24bit
long RGB value

Example: Draw a yellow pixel at the coordinates on channel 0.
P42Display.SetRGBPixel (CHO, 314, 159, Ox00OFFFFOQ);

SetYUVPixel ()

Draw a pixel on the screen at the given coordinates.

The colour can be picked from the default colour table in chapter “8-Bit Default Palette”.

void SetYUVPixel (byte channel, word x, word y, byte colour);

Value Size Description
channel byte Channel # to be configured, can be from 0 to 3
X word x coordinate of the pixel

y word y coordinate of the pixel

colour byte YUV colour value picked from default palette

Example: Draw a green pixel at the coordinates on channel 0.
P42Display.SetYUVPixel (CHe, 157, 079, 0x98);

PrintChar ()

Print a character of the default character set, stored in SPI Flash, on the screen at the given coordinates. The
character is always an 8x8 pixel area, even if the right most columns do not contain any positive pixels.

The default character set is described in chapter “Program FLASH with character bitmap”.

The colour can be picked from the default colour table in chapter “8-Bit Default Palette”.

void PrintChar (byte channel, char Letter, word x, word y, byte colour);

Value Size Description
channel byte Channel # to be configured, can be from 0 to 3
Letter char ASCII code of the character to print on screen

X word x coordinate of the top left corner of the character
y word y coordinate of the top left corner of the character
colour byte YUV colour value picked from default palette

Example: Draw a dark purple hashtag at the coordinates on channel 0.
P42Display.PrintChar (CH8, '#', ©, 40, 0x23);

PrintString ()

Print a character string of the default character set, stored in SPI Flash, on the screen at the given
coordinates. The characters are always an 8x8 pixel area (fixed width font), even if the right most columns do
not contain any positive pixels.

The default character set is described in chapter “Program FLASH with character bitmap”.

The colour can be picked from the default colour table in chapter “8-Bit Default Palette”.

void PrintString (byte channel, char* Text, word x, word y, byte colour);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

Text char* | Pointer to the 1% character of the sting to print on screen
X word | x coordinate of the top left corner of the 1* character

y word | y coordinate of the top left corner of thelst character
colour byte YUV colour value picked from default palette

Example: Print a string at the coordinates in brown letters on channel 0.

P42Display.PrintChar (CHO, 'Nasenbaer', 0, 40, OxF4);

UARTDataToFlash ()

byte UARTDataToFlash (u_int32 length, u_int32 mem_location);

Value Size Description
length u_int32 | Length of the data packet
mem_location | u_int32 | Flash memory location of the image data

Example:

DisplayBMPFromFlash ()
Displays an image saved in the given Flash memory location. The pixel colour index is use as the video chip

default palette index. No colour conversion is done at this stage.

Currently there is a limitation, that the x value must be a 32-bit boundary.

void DisplayBMPFromFlash (byte channel, u_int32 mem_location, u_intl6 x, u_intl6 y);

Value Size Description

channel byte | Channel # to be configured, can be from 0 to 3

mem_location | u_int32 | Flash memory location of the image data

X word | x coordinate of the top left corner of the image (32-bit aligned)
y word | y coordinate of the top left corner of the image
Example:

Library functions ImageFlashWrite.h/.cpp

f_ SPImemdump ()

Print a number of bytes from the SPI Flash memory chip on the serial console.

void f_SPImemdump (unsigned long address, unsigned int bytes);

Value Size Description

Address ulong | Start address of memory dump
Bytes uint Number of bytes to display

Example:
f_SPImemdump (©x3000, 32);

Output (typical header start of a BMP image file:

0x3000: 0Ox42 0x4D Ox0A 0x13 Ox00 0x00 O0x00 ©x00 BM...... H
0x3008: 0Ox00 O0x00 Ox36 Ox04 Ox00 Ox00 0x28 0x00 ..6...(.;
0x3010: 0Ox00 0x00 Ox34 Ox00 O0x00 0x00 0x49 0x00 ..4...I.;
0x3018: 0Ox00 0x00 Ox01l Ox00 Ox08 Ox00 0x00 O0x00 H

f_ DownloadImage ()

A BMP image is received over UART and written to the specified memory location. Currently only 256 colour
BMPs make sense to write, because they are the only type that gets displayed correctly by the
DisplayBMPFromFlash () routine.

The image needs to be sent in binary mode to not convert any characters into different sequences.
TeraTerm4 send file option works really well, when Binary option is enabled.

void f_DownloadImage (unsigned long memory_location);

Value Size Description

memory_location | ulong | Start address of memory to store the image data | |

Example:

f_DownloadConvertImage ()

A BMP image is received over UART, colour space converted and written to the specified memory location.
The colour space of the original image is mapped to the 8-bit default palette shown in section xxx. Currently
only 256 colour BMPs make sense to write, because they are the only type that gets displayed correctly by
the DisplayBMPFromFlash () routine.

The image needs to be sent in binary mode to not convert any characters into different sequences.
TeraTerm4 send file option works really well, when Binary option is enabled.

The colour conversion is basically a 3D distance optimization with all RGB values of the palette colours and
the pixel colour to convert are mapped in a 3D space (R->x; G->y; B->z) and the shortest distance between
pixel and respective palette colour are used as display colour.

void f_DownloadConvertImage (unsigned long memory_location);

Value Size Description

memory_location | ulong | Start address of memory to store the converted image data | |

Example:

SPImemSectorErase ()
Erase a 256 byte memory in the Flash memory. Start address must be 256 byte boundary aligned.
void SPImemSectorErase (unsigned long mem_addr);

Value Size Description

mem_addr | ulong | Start address of memory to be erased (must be a 256 byte boundary) | |

Example:

YUV Palette

Without a working RGB to YUV conversion yet, the easiest way is to pick the 8bit YUV colour value from the
following default palette colour table:

8-Bit Default Palette

H\L

Ox

1x

2x

3x

ax

5x

6x

7x

8x

9x

Ax

Bx

Cx

Dx

Ex

Fx

x0 x1 x2 x3 x4 x5 X6 X7 x8 x9 XA xB LxC ‘xD LxE LxF

e |

NTSC/PAL Color Conversion Tool

Unfortunately not available yet.

Video Signal Information

Timings for 640x480:
http://tinyvga.com/

http://www.microvga.com/

Mit einem FPGA einen alten Laptop Schirm ansteuern
https://drive.google.com/file/d/1KpEgE7tbPQhqgmzTtySVD6Gch TDvQic/view

https://hackaday.com/2015/10/15/spit-out-vga-with-non-programmable-logic-chips/

https://hackaday.io/project/9782-nes-zapper-video-synth-theremin/log/32271-vga-sync-generation
VGA controller in VHDL

http://Islwww.epfl.ch/pages/teaching/cours Isl/ca_es/VGA.pdf

No guarantee for the correctness of the websites listed here.

Frame Timing:

Pixel RGE Levels

Video et |
% izantal
Line Blankng

Interval

Harizamal
Blanking
Interval

Frant Porch \21 { Back Porch
Horizontal | ! v '
Sync . i \
G 25.17 ps B
jq 26.11 ps & :
< 20.88 ps B
j‘} 31.77 pus >

Vertical
Blanwng
Interval

Front Porch \ {- Back Porch

- Vertical
Video Blanking
Frame Interval

Vertical |_| ! u
Sync ! V
i 9 15.25 ms o
< 15.70 ms B
< 15.764 ms B |
g 16.784 ms ;,

http://tinyvga.com/
http://www.microvga.com/
https://drive.google.com/file/d/1KpEgE7tbPQhqqmzTtySVD6Gch_TDvQic/view
https://hackaday.com/2015/10/15/spit-out-vga-with-non-programmable-logic-chips/
https://hackaday.io/project/9782-nes-zapper-video-synth-theremin/log/32271-vga-sync-generation
http://lslwww.epfl.ch/pages/teaching/cours_lsl/ca_es/VGA.pdf

o

HSYNC

".l"lvl?BD + -
U L L
Clock 26.25 MHz
HSYNC (Measured in Clocks)
A 800 3048 Us
B 96 3.66 usS
C 48 1.83 wus
D 640 2438 usS
E 16 0.61 wus
VSYNC (Measured in HSYNC's)
9] 525 16.00 mS
P 2 0.06 ms
Q 33 1.01 ms
R 480 14.63 mS
5 10 0.30 m5

This is a living document. Any missing content will be added as appropriate.

Revision Control

Version Data Changes

1.0 22. May 2021 | Initial Madman Chicken-scratch Manifesto
1.1 29. July 2024 | Added GPIO content

2.0 17.Jan 2026 Board Version 2.0

