

Pier42 Pico-Video4 Rev2.0
Designed by Wolfgang Friedrich

© 2026 by Pier42 Electronics Design

https://hackaday.io/project/196770-rpi-pico-video4

https://www.tindie.com/products/pier42/rpi-pico-rp2040-4x-video-palntsc-board/

https://hackaday.io/project/196770-rpi-pico-video4
https://www.tindie.com/products/pier42/rpi-pico-rp2040-4x-video-palntsc-board/

Table of Contents
Table of Contents .. 2

Introduction .. 4

Hardware .. 5

Video channel mapping ... 5

RPi Pico pin mapping ... 5

IO circuits .. 6

More heading .. 6

More headings... 7

Flash Memory ... 7

Memory Map... 7

Program FLASH with character bitmap ... 7

Arduino Integration .. 9

Software .. 9

Resolutions .. 9

Constants .. 10

Color Palette .. 10

P42_Pico_Video4 Functions ... 10

Library Control Functions VS23S040.h/.cpp ... 11

P42Display () .. 11

Config () 11

SPIReadRegister () .. 11

SPIReadRegister16 () .. 12

SPIWriteRegister () ... 12

SPIWriteRegister16 () ... 12

SPIWriteRegister32 () ... 13

SPIWriteRegister40 () ... 13

SPIReadByte () ... 14

SPIReadWord () .. 14

SPIWriteByte () .. 14

SPIWriteWord () ... 15

Library Graphics functions VS23S040.h/.cpp .. 15

ClearScreen () .. 15

FilledRectangle () ... 15

SetRGBPixel () .. 16

SetYUVPixel () .. 16

PrintChar () .. 17

PrintString () .. 17

UARTDataToFlash () ... 18

DisplayBMPFromFlash () .. 18

Library functions ImageFlashWrite.h/.cpp.. 18

f_SPImemdump () .. 18

f_DownloadImage () .. 19

f_DownloadConvertImage () .. 19

SPImemSectorErase () .. 20

YUV Palette ... 21

8-Bit Default Palette .. 21

NTSC/PAL Color Conversion Tool ... 21

Video Signal Information .. 22

Revision Control .. 24

Introduction

The Pico Video4 Display is a stand-alone RaspberyPi pIco board.

This board provides up to 4 analog composite video display interfaces with integrated frame buffer memory

accessible through SPI. The 4 video outputs are accessible through 1 RCA connector and 1 VGA DB15-HD

connector that uses the red, green and blue channels for the composite signal.

PAL and NTSC output formats are supported; display resolutions range from 320x200 with 65536 colours up

to 720x576 with reduced colour count. It can be ordered as NTSC version with a 3.579545 MHz crystal or as

PAL version with 4.43618 MHz crystal. Currently 2 resolutions are implemented: NTSC 320x200 with 256

colours or PAL 300x240 with 256 colours. The heart of this design is the VLSI VS23S040 chip, which is able to

output 4 composite video with resolutions from 320x200 in 65536 colours to 720x576 in 4 colours. The chip

has a 1Mbit framebuffer per channel, unused memory can be used for graphics tiles, which can be copied

into the image data by the internal fast memory block move hardware.

A 16 Mbit SPI FLASH memory is available on-board. It is pre-loaded with a character bitmap consisting of 94

characters (ASCII code 33-126), a vintage Amiga Boing Ball demo, and 9 images ready to display.

It has 8 inputs that are voltage compatible to the input voltage; 5 V when powered from USB-C and up to 12

V when powered from the barrel connector or screw terminal.

Specifications:

 Operating supply voltage 5.0 V – 12 V

 Raspberry Pi Pico with 16 Mbit Program Flash memory

 USB-C connector for 5 V power and communication/programming

 SWdebug header

 4x Composite Video Output

 Maximum resolution 720x576 in 4 colours

 Implemented resolutions: NTSC 320x200 or 426x200 with 256 colours and PAL 300x240 or 500x240

with 256 colours

 Crystal: NTSC 3.579545 MHz or PAL 4.43618 MHz

 Communication interface: SPI up to 38 MHz

 Video Frame Buffer: 4x 1 Mbit = 4x 128 KByte

 Data Flash: 16 Mbit = 2 Mbyte

 QWIIC I2C connector vertical orientation

 8 inputs, high voltage up to input voltage level 5-12 V, with LED indicator

 8 dip switches to simulate the inputs

 LED and 2-pin jumper for status and control

 Power output, switched and fused with 500mA polyfuse

 TH prototyping area

 Size: 85mm x 100mm (3.3" x 3.9")

Hardware

Video channel mapping

The 4 video channels of the VS23S040 are mapped as following:

Video Channel Hardware Mapping

0 RCA port

1 VGA blue

2 VGA green

3 VGA red

RPi Pico pin mapping

Function RPI GPIO port Alt. Function Note

IN1Pin 13

IN2Pin 12

IN3Pin 11

IN4Pin 10

IN5Pin 9

IN6Pin 8

IN7Pin 7

IN8Pin 6

OUTPin 5

OUTLED 27

ENABLE 26

TP6 29 UART0 RX/ADC3

TP7 28 UART0 TX/ADC2

TP8 25 UART1 RX

TP13 2 I2C1 SDA

TP14 3 I2C1 SCL

TP15 4 UART1 TX

GPIO15 15 Bottom side on PCB rev1

GPIO21 21 Bottom side on PCB rev1

GPIO22 22 Bottom side on PCB rev1

QWIIC_SCL 1 UART0 RX J8 (pins 3 and 4 are swapped)

QWIIC_SDA 0 UART0 TX J8 (pins 3 and 4 are swapped)

From the table GPIOs are through holes, wires can easily soldered to them. All adjacent holes are on a

2.54mm grid. TP 15, 21, 22 are just pads on the bottom side, wires could be soldered as well. J8 is a QWIIC

connector, but I messed up the pinout, pins 3 and 4 are switched. Infos can be found here:

Sparkfun QWIIC

Most GPIOs have more interface functions or can also be used as PWM / SIO (single-cycle IO) / PIO

(programmable IO). The datasheet tells all the details or here is a good summary:

GPIO Function Matrix

IO circuits

Input circuit:

Output power circuit:

.

More heading

https://www.sparkfun.com/qwiic
https://www.circuitstate.com/pinouts/raspberry-pi-pico-rp2040-microcontroller-board-pinout-diagrams/#GPIO_Function_Matrix

.

More headings

.

Flash Memory

Memory Map
By default the 16 Mibit (2 MiByte) Flash memory is used as follows:

Memory Bytes Description

0 - 751 0x00000-0x002EF 94 letters each 8 byte

752 - 4095 0x002F0-0x00FFF empty

4096 - 12287 0x01000-0x02FFF 8 frames 32x32 byte for BoingBall demo

12287 - 131071 0x03000-0x1FFFF BMP image for picture demo or logo for Input demo

131072 - 262143 0x20000-0x3FFFF Image #1

262143 - 393215 0x40000-0x5FFFF Image #2

393216 - 524287 0x60000-0x7FFFF Image #3

524288 - 655359 0x80000-0x9FFFF Image #4

655786 - 786431 0xA0000-0xBFFFF Image #5

786432 - 917503 0xC0000-0xDFFFF Image #6

719504 - 1048575 0xE0000-0xFFFFF Image #7

1048576 - 1179647 0x100000-0x11FFFF Image #8

1179648 - 1310719 0x120000-0x13FFFF Image buffer for colour conversion

1310719 - 2097151 0x140000-0x1FFFFF free

Program FLASH with character bitmap

See https://hackaday.io/project/21097/instructions for details.

Here is am ASCII character table for the symbols programmed in Flash by default

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

33 21 ! 57 39 9 81 51 Q 105 69 i

34 22 “ 58 3A : 82 52 R 106 6A j

35 23 # 59 3B ; 83 53 S 107 6B k

36 24 $ 60 3C < 84 54 T 108 6C l

37 25 % 61 3D = 85 55 U 109 6D m

38 26 & 62 3E > 86 56 V 110 6E n

39 27 ‘ 63 3F ? 87 57 W 111 6F o

https://hackaday.io/project/21097/instructions

40 28 (64 40 @ 88 58 X 112 70 p

41 29 0 65 41 A 89 59 Y 113 71 q

42 2A * 66 42 B 90 5A Z 114 72 r

43 2B + 67 43 C 91 5B [115 73 s

44 2C , 68 44 D 92 5C \ 116 74 t

45 2D - 69 45 E 93 5D] 117 75 u

46 2E . 70 46 F 94 5E ^ 118 76 v

47 2F / 71 47 G 95 5F _ 119 77 w

48 30 0 72 48 H 96 60 ` 120 78 x

49 31 1 73 49 I 97 61 a 121 79 y

50 32 2 74 4A J 98 62 b 122 7A z

51 33 3 75 4B K 99 63 c 123 7B {

52 34 4 76 4C L 100 64 d 124 7C |

53 35 5 77 4D M 101 65 e 125 7D }

54 36 6 78 4E N 102 66 f 126 7E ~

55 37 7 79 4F O 103 67 g

56 38 8 80 50 P 104 68 h

Arduino Integration

What to do for programming the board with Arduino IDE 2.3:

Follow:

https://arduino-pico.readthedocs.io/en/latest/install.html#installing-via-arduino-boards-manager

Software

Resolutions

Currently implemented are

 PAL 300x240 8bit

 PAL 500x240 8bit

 NTSC320x200 8bit

 NTSC426x200 8bit

How to select an implemented resolution, please see chapter “Config ()” on page 11.

Possible Resolutions are (copied from the VLSI VS23S040 datasheet):

https://arduino-pico.readthedocs.io/en/latest/install.html#installing-via-arduino-boards-manager

Implementation of the current resolutions was greatly supported by VLSI Solutions

http://www.vlsi.fi/en/home.html as part of demo code for the VS23S010D-L chip.

For more information see:

http://www.vsdsp-forum.com/phpbb/viewforum.php?f=14

http://www.vlsi.fi/en/products/vs23s010.html

https://webstore.vlsi.fi/epages/vlsi.sf/en_GB/?ObjectID=13893093

Constants

The following constants are provided by the library. They are useful to make the code adapting to other

resolutions.

Name Description

XPIXELS X size of the picture area

YPIXELS Y size of the picture area

Color Palette

The colour palette is defined as part of the controller configuration. It is described in good detail by a series

of forum posts on the VLSI website:

Nice color palettes for VS23S010 TV-Out

Understanding Protolines and Line Pointers

Also a handy table to pick colours by their 8 bit YUV value is located in chapter “8-Bit Default Palette”

P42_Pico_Video4 Functions

COM Port Terminal set to 19200 baud, 8N1, transmit CR only

w[1-8] Write Image into Buffer 1-8
w0 Write Logo Image into Memory 128x128 px^2
i[1-8] Colour convert and write Image into Buffer 1-8
i0 Colour convert and write Logo Image into Memory 128x128 px^2
s[0-8] Show Image[0-8] on screen
m[0-8] Show Memory Dump of Image[0-8] 'x':Exit 'anykey':next page
d[0-9] Delete memory section of Image[0-9]
c Clear Screen
v Show Version
? This help command

http://www.vlsi.fi/en/home.html
http://www.vsdsp-forum.com/phpbb/viewforum.php?f=14
http://www.vlsi.fi/en/products/vs23s010.html
https://webstore.vlsi.fi/epages/vlsi.sf/en_GB/?ObjectID=13893093
http://www.vsdsp-forum.com/phpbb/viewtopic.php?f=14&t=1813
http://www.vsdsp-forum.com/phpbb/viewtopic.php?f=14&t=1829

Library Control Functions VS23S040.h/.cpp

P42Display ()

Board and SPI interface configuration.

Pin Pin Nr Direction Default Description

MVBLK In X Ready signal after Block Move Command

nWP Out High Write Protect for Flash Memory and
Video Controller

nHOLD Out High Hold signal for SPI interface

nMemSelect Out High SPI Select for Flash Memory

nSlaveSelect Out High SPI Select for Video Controller

Config ()

Full configuration of the video controller including protolines, picture lines and video resolution.

word Config(byte channel);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

return value word Content of the Device ID register for the selected channel

Example: Configure channel 0

Result = P42Display.Config (CH0);

The resolution is set in the VS23S040D.h file by removing the comment of the desired resolution:

// *** Select Video Resolution here ***

#define NTSC320x200

//#define PAL300x240

Here NTSC320x200 is selected.

SPIReadRegister ()

Read an 8bit register value from the video controller.

byte SPIReadRegister (byte address, boolean debug);

Value Size Description

address byte Opcode of the video controller command, also called register address

debug boolean Define if the address and return value will be written to a serial
debug port. The debug port needs to be configured in the setup()
routine, e.g. Serial.begin(115200);

return value byte Result of the read command

Example: Read Manufacturer and Device ID register (8bit)

Result = P42Display.SPIReadRegister (ReadDeviceID, true);

 Result will be 0x2B.

Debug output will be: "SPI address: 0x9F : 0x2B”

SPIReadRegister16 ()

Read a 16bit register value from the video controller.

word SPIReadRegister16 (byte address, boolean debug);

Value Size Description

address byte Opcode of the video controller command, also called register address

debug boolean Define if the address and return value will be written to a serial debug
port. The debug port needs to be configured in the setup() routine,
e.g. Serial.begin(115200);

return value byte Result of the read command

Example: Read Manufacturer and Device ID register (16bit)

Result = P42Display.SPIReadRegister (ReadDeviceID, false);

 Result will be 0x2B00.

No debug output.

SPIWriteRegister ()

Write an 8bit value to a register in the video controller.

void SPIWriteRegister (byte address, byte value, boolean debug);

Value Size Description

address byte Opcode of the video controller command, also called register address

value byte Register value to be written into the given register address

debug boolean Define if the address and register value will be written to a serial debug
port. The debug port needs to be configured in the setup() routine, e.g.
Serial.begin(115200);

Example: Write GPIO Control Register

P42Display.SPIWriteRegister(WriteGPIOControl, PIO4Dir | PIO4High, false);

SPIWriteRegister16 ()

Write a 16bit value to a register in the video controller.

void SPIWriteRegister16 (byte address, word value, boolean debug);

Value Size Description

address byte Opcode of the video controller command, also called register address

value word Register value to be written into the given register address

debug boolean Define if the address and register value will be written to a serial debug
port. The debug port needs to be configured in the setup() routine, e.g.
Serial.begin(115200);

Example: Write left limit of visible picture

SPIWriteRegister16 (WritePictureStart, STARTPIX-1, false);

SPIWriteRegister32 ()

Write a 32bit value to a register in the video controller.

void SPIWriteRegister32 (byte address, unsigned long value, boolean debug);

Value Size Description

address byte Opcode of the video controller command, also called register address

value unsigned
long

Register value to be written into the given register address

debug boolean Define if the address and register value will be written to a serial debug
port. The debug port needs to be configured in the setup() routine, e.g.
Serial.begin(115200);

Example: Write microcode

SPIWriteRegister32 (WriteProgram, ((OP4 << 24) | (OP3 << 16) | (OP2 << 8) | (OP1)), false);

SPIWriteRegister40 ()

Write a 40bit value to a register in the video controller. The 40bit value is split into 2x 16bit plus one 8bit

parameter for a more intuitive and readable code. Only the ‘Block Move Control 1’ register is 40bit wide, so

the parameters are conveniently named for the register only.

void SPIWriteRegister40 (byte address, word source, word target, byte control, boolean debug);

Value Size Description

address byte Opcode of the video controller command, also called register address

source word Source memory address for the block move command

target word Target memory address for the block move command

control word Control bits for block move and DAC output

debug boolean Define if the address and register value will be written to a serial debug
port. The debug port needs to be configured in the setup() routine, e.g.
Serial.begin(115200);

Example: Enable PAL Y lowpass filter

SPIWriteRegister40 (WriteBlockMoveControl1, 0x0000, 0x0000, BMVC_PYF, false);

SPIReadByte ()
Read an 8bit value from the SRAM video buffer memory in the video controller.

byte SPIReadByte (byte channel, unsigned long address);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

address unsigned
long

video buffer memory address

return value byte Result of the read command

Example: Read address 0 from channel 1

Byte1 = SPIReadByte (CH1, 0x00000000);

SPIReadWord ()

Read a 16bit value from the SRAM video buffer memory in the video controller.

word SPIReadByte (byte channel, unsigned long address);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

address unsigned
long

video buffer memory address

return value word Result of the read command

Example: Read address 0 from channel 2

Word1 = SPIReadWord (CH2, 0x00000000);

SPIWriteByte ()

Write an 8bit value to the SRAM video buffer memory in the video controller.

void SPIWriteByte (byte channel, unsigned long address, byte value, boolean debug);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

address unsigned
long

video buffer memory address

value byte Data value to be written into the given memory address

debug boolean Define if the address and memory value will be written to a serial debug
port. The debug port needs to be configured in the setup() routine, e.g.
Serial.begin(115200);

Example: Write a YUV data value to a specific x,y coordinate to channel 3

SPIWriteByte (CH3, PICLINE_BYTE_ADDRESS(y) + x, YUVdata, false);

SPIWriteWord ()

Write a 16bit value to the SRAM video buffer memory in the video controller.

void SPIWriteWord (byte channel, unsigned long address, word value, boolean debug);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

address unsigned
long

video buffer memory address

value word Data value to be written into the given memory address

debug boolean Define if the address and memory value will be written to a serial debug
port. The debug port needs to be configured in the setup() routine, e.g.
Serial.begin(115200);

Example: Clear entire video buffer channel 0 memory (everything not only the picture data area!)

for (i=0; i < 65536; i++)

SPIWriteWord (CH0, i, 0x0000, false);

Library Graphics functions VS23S040.h/.cpp

ClearScreen ()

Clear the video screen by filling the framebuffer memory with a given colour value. The colour can be picked

from the default colour table in chapter “8-Bit Default Palette”.

void ClearScreen (byte channel, byte colour);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

colour byte YUV colour value picked from default palette

Example: Clear screen and set to a light blue background colour for channel 0.

P42Display.ClearScreen (CH0, 0x5c);

FilledRectangle ()

Draw a filled rectangle into the video buffer. This function was re-used from the Arduino demo provided by

VLSI. See here for details: http://www.vsdsp-forum.com/phpbb/viewtopic.php?f=14&t=2172

The colour can be picked from the default colour table in chapter “8-Bit Default Palette”.

http://www.vsdsp-forum.com/phpbb/viewtopic.php?f=14&t=2172

void FilledRectangle (byte channel, u_int16 x1, u_int16 y1, u_int16 x2, u_int16 y2, u_int16 color);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

x1 u_int16 x coordinate of top left corner of the rectangle

y1 u_int16 y coordinate of top left corner of the rectangle

x2 u_int16 x coordinate of bottom right corner of the rectangle

y2 u_int16 y coordinate of top bottom right of the rectangle

color u_int16 YUV colour value picked from default palette. Only the lower 8 bit are used
for colour information.

Example: Draw a 10 pixel by 10 pixel square in the top left corner of the screen in yellow colour on channel 0.

P42Display.FilledRectangle (CH0, 0, 0, 9, 9, 0xBF);

SetRGBPixel ()

This is an experimental function and should not be used for now. Eventually it will perform a RGB-to-YUV

conversion depending on the colour space of the given colourspace.

Draw a pixel on the screen at the given coordinates.

The colour is a 32 bit unsigned integer of the format 0x00RRGGBB representing a 24bit RGB value.

void SetRGBPixel (byte channel, word x, word y, unsigned long colour);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

x word x coordinate of the pixel

y word y coordinate of the pixel

colour unsigned
long

32 bit unsigned integer of the format 0x00RRGGBB representing a 24bit
RGB value

Example: Draw a yellow pixel at the coordinates on channel 0.

P42Display.SetRGBPixel (CH0, 314, 159, 0x00FFFF00);

SetYUVPixel ()

Draw a pixel on the screen at the given coordinates.

The colour can be picked from the default colour table in chapter “8-Bit Default Palette”.

void SetYUVPixel (byte channel, word x, word y, byte colour);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

x word x coordinate of the pixel

y word y coordinate of the pixel

colour byte YUV colour value picked from default palette

Example: Draw a green pixel at the coordinates on channel 0.

P42Display.SetYUVPixel (CH0, 157, 079, 0x98);

PrintChar ()

Print a character of the default character set, stored in SPI Flash, on the screen at the given coordinates. The

character is always an 8x8 pixel area, even if the right most columns do not contain any positive pixels.

The default character set is described in chapter “Program FLASH with character bitmap”.

The colour can be picked from the default colour table in chapter “8-Bit Default Palette”.

void PrintChar (byte channel, char Letter, word x, word y, byte colour);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

Letter char ASCII code of the character to print on screen

x word x coordinate of the top left corner of the character

y word y coordinate of the top left corner of the character

colour byte YUV colour value picked from default palette

Example: Draw a dark purple hashtag at the coordinates on channel 0.

P42Display.PrintChar (CH0, '#', 0, 40, 0x23);

PrintString ()

Print a character string of the default character set, stored in SPI Flash, on the screen at the given

coordinates. The characters are always an 8x8 pixel area (fixed width font), even if the right most columns do

not contain any positive pixels.

The default character set is described in chapter “Program FLASH with character bitmap”.

The colour can be picked from the default colour table in chapter “8-Bit Default Palette”.

void PrintString (byte channel, char* Text, word x, word y, byte colour);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

Text char* Pointer to the 1st character of the sting to print on screen

x word x coordinate of the top left corner of the 1st character

y word y coordinate of the top left corner of the1st character

colour byte YUV colour value picked from default palette

Example: Print a string at the coordinates in brown letters on channel 0.

P42Display.PrintChar (CH0, 'Nasenbaer', 0, 40, 0xF4);

UARTDataToFlash ()

byte UARTDataToFlash (u_int32 length, u_int32 mem_location);

Value Size Description

length u_int32 Length of the data packet

mem_location u_int32 Flash memory location of the image data

Example:

…

DisplayBMPFromFlash ()

Displays an image saved in the given Flash memory location. The pixel colour index is use as the video chip

default palette index. No colour conversion is done at this stage.

 Currently there is a limitation, that the x value must be a 32-bit boundary.

void DisplayBMPFromFlash (byte channel, u_int32 mem_location, u_int16 x, u_int16 y);

Value Size Description

channel byte Channel # to be configured, can be from 0 to 3

mem_location u_int32 Flash memory location of the image data

x word x coordinate of the top left corner of the image (32-bit aligned)

y word y coordinate of the top left corner of the image

Example:

…

Library functions ImageFlashWrite.h/.cpp

f_SPImemdump ()

Print a number of bytes from the SPI Flash memory chip on the serial console.

void f_SPImemdump (unsigned long address, unsigned int bytes);

Value Size Description

Address ulong Start address of memory dump

Bytes uint Number of bytes to display

Example:

f_SPImemdump (0x3000, 32);

Output (typical header start of a BMP image file:

0x3000: 0x42 0x4D 0x0A 0x13 0x00 0x00 0x00 0x00 BM......;

0x3008: 0x00 0x00 0x36 0x04 0x00 0x00 0x28 0x00 ..6...(.;

0x3010: 0x00 0x00 0x34 0x00 0x00 0x00 0x49 0x00 ..4...I.;

0x3018: 0x00 0x00 0x01 0x00 0x08 0x00 0x00 0x00;

f_DownloadImage ()

A BMP image is received over UART and written to the specified memory location. Currently only 256 colour

BMPs make sense to write, because they are the only type that gets displayed correctly by the

DisplayBMPFromFlash () routine.

The image needs to be sent in binary mode to not convert any characters into different sequences.

TeraTerm4 send file option works really well, when Binary option is enabled.

void f_DownloadImage (unsigned long memory_location);

Value Size Description

memory_location ulong Start address of memory to store the image data

Example:

…

f_DownloadConvertImage ()

A BMP image is received over UART, colour space converted and written to the specified memory location.

The colour space of the original image is mapped to the 8-bit default palette shown in section xxx. Currently

only 256 colour BMPs make sense to write, because they are the only type that gets displayed correctly by

the DisplayBMPFromFlash () routine.

The image needs to be sent in binary mode to not convert any characters into different sequences.

TeraTerm4 send file option works really well, when Binary option is enabled.

The colour conversion is basically a 3D distance optimization with all RGB values of the palette colours and

the pixel colour to convert are mapped in a 3D space (R->x; G->y; B->z) and the shortest distance between

pixel and respective palette colour are used as display colour.

void f_DownloadConvertImage (unsigned long memory_location);

Value Size Description

memory_location ulong Start address of memory to store the converted image data

Example:

…

SPImemSectorErase ()

Erase a 256 byte memory in the Flash memory. Start address must be 256 byte boundary aligned.

void SPImemSectorErase (unsigned long mem_addr);

Value Size Description

mem_addr ulong Start address of memory to be erased (must be a 256 byte boundary)

Example:

YUV Palette

Without a working RGB to YUV conversion yet, the easiest way is to pick the 8bit YUV colour value from the

following default palette colour table:

8-Bit Default Palette

H\L x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

Ax

Bx

Cx

Dx

Ex

Fx

NTSC/PAL Color Conversion Tool

Unfortunately not available yet.

Video Signal Information

Timings for 640x480:

http://tinyvga.com/

http://www.microvga.com/

Mit einem FPGA einen alten Laptop Schirm ansteuern

https://drive.google.com/file/d/1KpEgE7tbPQhqqmzTtySVD6Gch_TDvQic/view

https://hackaday.com/2015/10/15/spit-out-vga-with-non-programmable-logic-chips/

https://hackaday.io/project/9782-nes-zapper-video-synth-theremin/log/32271-vga-sync-generation

VGA controller in VHDL

http://lslwww.epfl.ch/pages/teaching/cours_lsl/ca_es/VGA.pdf

No guarantee for the correctness of the websites listed here.

Frame Timing:

http://tinyvga.com/
http://www.microvga.com/
https://drive.google.com/file/d/1KpEgE7tbPQhqqmzTtySVD6Gch_TDvQic/view
https://hackaday.com/2015/10/15/spit-out-vga-with-non-programmable-logic-chips/
https://hackaday.io/project/9782-nes-zapper-video-synth-theremin/log/32271-vga-sync-generation
http://lslwww.epfl.ch/pages/teaching/cours_lsl/ca_es/VGA.pdf

This is a living document. Any missing content will be added as appropriate.

Revision Control

Version Data Changes

1.0 22. May 2021 Initial Madman Chicken-scratch Manifesto

1.1 29. July 2024 Added GPIO content

2.0 17. Jan 2026 Board Version 2.0

