Page 1 of 16

Octo@uad specification

C'TA PeNDO330
T MW Uonlip3 Jl14 PENDO}d0

DCL-0QF1
3.3v ONLY!

EXT 3.3y ENC BUS PWR REQ'D "

o en -
o e of
oL e P
ol -
- ~ Ll
= =
o o o

Digital Chicken Labs

3.3V Only !

@epoooOKoOOOO0O0DOON®O0

OctoQuad ' DigitalChickenLabs
Y19 | OctoQuad

@& . FTC Edition MK 1

CQOHOOOOKNOUK

3.3V_ O_nly ! g 3.3v ONLY!
(036 e peos

OctoQuad OctoQuad FTC Edition

Spec. Rev. 3.0.1-7/17/2024

Spec. Rev. 3.0.0

Table of Contents

Page 2 of 16

TADIE OF CONTENTS ...eiiiieetie ettt ettt e e e s bt e s bee e s ae e e sabe e e sabeesabeesabeeesabeeeseeesnteesanenesaneann 2
R [01 oo [¥ ot i o] TSRO PP TP U RO PPTOUPRR 4
11 OVEIVIBW ..ottt ettt e e s s e e s s b et e s s b e e e s s aba e e s snba e e s sarae s 4
1.2 BOAId VEISIONS ...ttt ettt st st sttt b e s b e s b e e sbe e saee et e et e e nbeenbeesaeenas 4
13 [DT=E o g1 o] A Te] o RO P PP PPPPU PP 4
1.4 SUPPOrEEd FIrMWAre VEISIONvviiiiciiiieeeiteee ettt ettt e sttt e e st e e s sbee e e s sbteeessbteeessbeeeesssenaessnes 4
P A =Yo d g oF | Y oY=y i Tor 1 d o T PSP 4
2.1 (oY =4 ol AV PSP 4
2.2 POWEK ..ttt e e e e s are s 4
2.3 QUArature SiZNAl INPULoiiiiiie et e s s e e e e sabe e e e ssabeeeessabeeesennreeas 5
2.4 Pulse Width SIZNal iNPULeei e e e s e e e s eabee e e s nareeas 5
2.5 ESD PrOteCHION coiiiiiieee ettt 5
3 PINOULS e e e e s e e s e s s e e e s a e s nree s 5
3.1 4-pin JST-PH Encoder Channel CONNECLONS.cccuiiiiiiiiiee ettt e st et e e s svae e e e sbeeeeesanes 5
3.2 7-pin 0.1” header (N/A 0N FTC EQItiON) ..iccvieciiiieeiiecciee e cte et ste e st e ere e veeveebe e beesaaesaneeaneenre s 5
3.3 4-pin JST-PH dedicated [2C CONNECEON......uuiiiiiiieee ittt ettt e e et e e s sbae e e e s baeeeesanes 5
4 Interface Selection (N/A on FTC EItiON)ccvieiiiieiieeeciee ettt ettt ettt e eveeeeare e eeteaeeareean 6
4.1 OVEBIVIBW ..ttt ettt et e s st e s s b e e s s b et e s s b e e e s s b e e e s samreeessmbeeesennrenes 6
4.2 Changing the activVe INTEIACEciiiiiie i 6
5 LED Status iNdiCAtiONScocuiiiiiiiieeiieeeee ettt s s et 6
5.1 OVEBIVIBW ..ttt ettt et e s st e s s e e e s s b et e s s emb et e s s b e e e s sambe e e s smbeeesennrenes 6
5.2 [D e = o PP P P PTPP TP 7
6 Field-Upgradable FIMWATIEooiiiiiieie ettt e e tee e e e et e e e e bt e e e e eatee e e eenraeeeesaseeeeennrenas 7
6.1 Obtaining fIrMWAre fil€Scoi i e e e s e sbae e e e sareeas 7
6.2 [] a1 Y= T a1V V- | SRS 7
7 ReGISTEIS (12C / SPIMOUE) .. eeiiieeieectee ettt ettt ettt et e ettt e e tae e e ete e e eateeeteeeetaeeeteeensseesntesenseeesnreeenes 7
7.1 LY=o E) =] = Yol ol 113N 7
7.2 LY== 1) =] ol Y/ - T N 7
7.3 e I T e 1o T 14 [o TSRS 8
S €] 44T 4 =T oo £SO UT PP TP USRI 9
8.1 D= of | o 1 o SN 9

Spec. Rev. 3.0.0

Page 3 of 16

8.2 COMMEANG LISE ottt ettt st e e s bt e e et e e st e e s bt e e sabeeesbeeesnseesaneeesareenane 9
1S B o= =T 0 0= (= PO PPN 10
9.1 (D= of] o1 ¥ o o SN 10
9.2 ParameEter LiSt....cocuiiiiiiiiii ittt 10
9.3 SETEING ParamMETEIS. ... ettt ettt e e e e s sttt e e e e e e e s bbbt e e e e e e e e s anrrraeeeeeeeanas 11
9.4 T o [T oY o [=T o U= =] PP 11
9.5 L T 1 U= =T gl D= of T o1 A o] 13N 11
10 [2C INTITACE ...ttt ettt h e bt st st ettt e s b e s bt e she e et e et e e e b e sheesatesareean e e beenes 12
L10.1 OVEIVIEW ..oiiiiiiiiiii ittt ettt et e s a e e e s et e e s sba e e e s s ba e e e s sabaeeessaraeeessanes 12
F0.2 ROEISTOIS . ceeiiiiiiiieietee ettt ettt et e e e ettt et et e e e e s bbbt e e e e e e e e s bbb taeeee e e e e bbb aaaeeeeeeeaabtbaeeeeeaeenannrnee 12
10.3 12CWedZEA BUS RECOVEIY ..cciuviiiiieiieie ettt e eeitee e settee e e stte e e ssbteeessbteeessasteeesssteeeesssaeessnssenessnnes 12
11 SPI Interface (N/A fOr FTC EQItION).....ccuiiiiieeeeieeciee et ettt et ete et e e eetee e ebeeeteeentaeesateeennas 13
I 0 R = TW T o Y=ol Tt | o o -SSRSOt 13
11.2 DAta PrOTOCOI ..coeiiiiieieei ettt ettt ettt e he e st sttt e b e b e b e be e saeesaeeenrean 13
S T 0= <15 (T g 1V, = o PP PP PSP PPPPPRRPIRt 14
12 USB Serial Interface (N/A for FTC EAItiON) ...cvccieiieeieeieeieereeereestee e ereereesteesteestaesanesbeereeveennas 15
12,1 OVEIVIEW ..ttt ettt et sttt e e s et e e s b et e e s e be e e e s e ra e e e s sraeeesereeeessanee 15
12.2 PrOTOCOL ettt sttt ettt e b e bt e he e sttt et e b e be e be e shee et e entean 15
12.3 ComMMANA TADIE et s 15
13 UART Interface (N/A fOr FTC EQItiON)....ccuicicee ittt et ettt st eae e eeave e svesesanee s 16
1301 OVEIVIEW ceeiiiiiiiiiiiectt et b e s ba e e sbe e s aa e e s b e e s ba e e sbe e s nn s 16

Spec. Rev. 3.0.0

1
11

1.2

13

1.4

Page 4 of 16

Introduction

Overview
This document describes the operation of the OctoQuad module and the programming interface.

Board Versions

The OctoQuad and OctoQuad FTC Edition are largely identical, with the main difference being the
FTC Edition only supports the 12C interface, and requires encoder bus power to come from an
auxiliary 3.3v source, as it does not contain a voltage regulator to power the encoder bus from
the USB connection. Only the FTC Edition is approved for use in FIRST Tech Challenge.

Description

The OctoQuad provides a means to read up to eight quadrature encoders or absolute pulse
width encoders on systems where decoding the signals directly using GPIO pins is not feasible.
The OctoQuad supports four different interfaces: 12C, SPI, UART, and USB.

For quadrature encoders, counts are tracked using signed 32-bit integers, and the counts for each
encoder are individually resettable. Additionally, the velocity of each encoder is tracked using a
signed 16-bit integer which represents the delta counts during a user-configurable sampling
interval.

For pulse width measurement, pulse width is measured in microseconds and is reported as a 32-
bit integer. Velocity is measured as the change in microsecond pulse width during the user
configurable sampling interval and reported as a signed 16-bit integer. The velocity calculation
requires user-specified minimum and maximum pulse width values.

Supported Firmware Version
This document supports firmware version 2.0.x

2 Electrical Specifications

2.1

2.2

Logic Level

The OctoQuad module uses 3.3v logic and power for SPI/I2C/UART bus communications, as well
as 3.3v power and logic for quadrature encoder signals. The 12C/SPI/UART and encoder
connections are NOT 5v tolerant!

Power

The OctoQuad module may be powered either via USB or via the 3.3v pin on the 12C/SPI/UART
bus connection. If powered via USB, the combined current draw from all 8 encoder ports must
not exceed 300ma. If power is provided to the 3.3v pin and USB is also connected, power will be
drawn from the USB host.

Spec. Rev. 3.0.0

Page 5 of 16

2.3 Quadrature signal input
The step rate should not exceed 1 million steps/sec on any individual port (higher rates may work,
but have not been tested). Note that the OctoQuad does NOT provide pull-up resistors for the
A/B quadrature channels.

2.4 Pulse width signal input
The OctoQuad can measure pulse width signals from 1us to 65535us

2.5 ESD Protection
The encoder channels and 12C lines are protected from ESD to +/- 15kV (air) on the standard
OctoQuad, and +/- 30kV (air) on the OctoQuad FTC Edition.

3 Pinouts

3.1 4-pin JST-PH Encoder Channel Connectors
Each encoder channel connector provides power and A/B quadrature or pulse width input signal
connections.

PCB Pin Label Function

G Ground

3 3.3v power supply for encoder

A Quadrature channel A OR Pulse Width Input
B Quadrature channel B

3.2 7-pin 0.1” header (N/A on FTC Edition)
This header provides connections to power the OctoQuad from a 3.3v supply and exposes the 12C,
SPI, and UART interface pins. Note that the pins are muxed and some pins serve multiple
functions (however, only one interface can be active at a time; see section 4).

PCB Pin # PCB Pin Label ‘ Function

1 (square pad) GND Ground

2 3.3v 3.3v power input

3 SCK / SDA SPI Clock OR 12C bus data

4 MISO / SCL SPI Transmit OR 12C bus clock

5 CS / URx SPI Chip Select OR UART receive
6 MOSI / UTx SPIreceive OR UART transmit

7 RST Reset line (active low)

3.3 4-pin JST-PH dedicated 12C Connector
This connector provides connections to power the OctoQuad and exposes the 12C interface data
pins. It is pin-compatible with the 12C ports on the REV Robotics Control Hub / Expansion Hub.

Spec. Rev. 3.0.0

Page 6 of 16

NOTE: The 12C lines exposed on this connector are electrically connected to the corresponding
pins on the 7-pin header.

PCB Pin Label Function ‘

G Ground

3 3.3v power input
D 12C bus data line
C 12C bus clock line

4 Interface Selection (N/A on FTC Edition)

4.1 Overview
Only one interface (I12C/SPI/UART/USB) can be active on the OctoQuad at a given time. Your
choice of interface is saved to non-volatile storage and is automatically applied at power-up. The
default interface is 12C. WARNING: Operating the OctoQuad in a different interface mode than
that which it has been electrically wired for in the connection to the host device may cause
permanent damage to the OctoQuad or to the host device!

4.2 Changing the active interface
1.
2.

Remove power from the OctoQuad

Hold the Mode Select button (‘M’ on resin printed case) while applying power to the
OctoQuad. Upon applying power, the LED should light and stay lit.

Release the Mode Select Button

The LED will now loop displaying a blink sequence followed by a pause to indicate a mode.
Press and release the Mode Select button to cycle through the various modes. The table
below lists how many blinks correspond to which interface mode.

Once the LED is indicating the desired mode, press and hold the Mode Select button until the
LED stays on solid.

Release the Mode Select Button

After a short time, the LED will begin blinking the sequence for the interface just selected.
Your interface choice is now stored in flash and will be applied at all future startups.

Number of blinks Interface ‘

1 12C

2 SPI

3 UART
4 uSB

5 LED Status indications

5.1 Overview
The status light on the OctoQuad is used to indicate various states of communication with a bus
master.

Spec. Rev. 3.0.0

Page 7 of 16

5.2 LED Patterns

5.2.1 Looping sequence of various number of blinks followed by a pause
Indicates that the OctoQuad is powered up and ready to accept communications over the
interface corresponding to the number of blinks (see table in Interface Selection section).

5.2.2 Rapid flashing (7Hz)
Indicates that there is in-flight or recent communication on the bus

5.2.3 Slow flashing (1Hz)
Indicates that bus communication has occurred since power-up, but no recent communication
has occurred.

5.2.4 Very rapid flashing (10Hz)
Internal error; please contact Digital Chicken Labs support (digitalchickenlabs@gmail.com)

6 Field-Upgradable Firmware

6.1 Obtaining firmware files
From time to time, official firmware updates for the OctoQuad may be released. Firmware
binaries may be found at https://github.com/DigitalChickenLabs/OctoQuad. WARNING: Flashing
unofficial firmware may cause permanent damage to the OctoQuad, or to devices to which it is
connected.

6.2 Flashing firmware
To flash a firmware image onto the OctoQuad, follow the procedure below:

Remove all power and data connections from the OctoQuad.

Press and hold the BOOTSEL button (‘B’ on resin printed case)

While holding BOOTSEL, connect the OctoQuad to a computer using the micro-USB port
Wait until the emulated USB drive appears on the computer. The LED will remain off.
Drag-n-drop the firmware image onto the emulated USB drive

The OctoQuad will automatically flash the firmware and reboot. Flashing is complete
when the emulated USB drive disappears and the status LED begins blinking an interface
code.

ok wnN R

7 Registers (I12C / SPI mode)

7.1 Register access
Some registers are read-only, some are write-only, and others are read/write, as indicated in the
register map. Writing to a read-only register will have no effect. Data read from a write-only
register is undefined.

7.2 Register Map
Address Type Access Contents

uint8_t Read-Only Chip ID (will read 0x51)
uint8_t Read-Only Firmware version (major)

Spec. Rev. 3.0.0

https://github.com/DigitalChickenLabs/OctoQuad

0x02 uint8_t
0x03 uint8_t
0x04 uint8_t
0x05 uint8 t
0x06 uint8_t
0x07 uint8 _t
0x08 uint8_t
0x09 uint8 _t
Ox0A uint8_t
0x0B uint8_t
0xOC — OxOF [WlaieyAN:
O0x10— 0x13 " WicPAR:
OXx14=0x17 Wi cPAR:
O0x18 = Ox1B Wi CPAR:
yale —oals int32_t
el @Rl int32_t
0Xx24 = 0x27 Wi PR
0Xx28 = 0Xx2B Wi P
0x2C—0x2D Iy # (s
OX2E — OX2F si & (s
e ErE | intl6_t
0x32 = 0x33 " Wsia (o
EUEER | intl6_t
&S ey, intle_t
e el intl6_t
EEE T intl6_t

7.3 Register descriptions
7.3.1 Chip ID register

Read-Only
Read-Only
Write-Only
Read / Write
Read / Write
Read / Write
Read / Write
Read / Write
Read / Write
Read / Write
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only

Page 8 of 16

Firmware version (minor)

Firmware version (engineering)

Command Register

Command Data Register O

Command Data Register 1

Command Data Register 2

Command Data Register 3

Command Data Register 4

Command Data Register 5

Command Data Register 6

Channel 0 data (quadrature count OR ps pulse width)
Channel 1 data (quadrature count OR ps pulse width)
Channel 2 data (quadrature count OR ps pulse width)
Channel 3 data (quadrature count OR ps pulse width)
Channel 4 data (quadrature count OR ps pulse width)
Channel 5 data (quadrature count OR ps pulse width)
Channel 6 data (quadrature count OR ps pulse width)
Channel 7 data (quadrature count OR ps pulse width)
Channel 0 velocity (counts or ps / sampling interval)
Channel 1 velocity (counts or us / sampling interval)
Channel 2 velocity (counts or ps / sampling interval)
Channel 3 velocity (counts or ps / sampling interval)
Channel 4 velocity (counts or ps / sampling interval)
Channel 5 velocity (counts or ps / sampling interval)
Channel 6 velocity (counts or ps / sampling interval)

Channel 7 velocity (counts or pus / sampling interval)

This register will always read 0x51 and may be used to confirm a proper bus connection with

the OctoQuad.

7.3.2 Firmware version registers
The firmware version follows the scheme major.minor.engineering where each of three
numbers is obtained from the corresponding register. For instance, if the registers read {2, 3, 4}
then the firmware version is 2.3.4.

Spec. Rev. 3.0.0

Page 9 of 16

7.3.3 Command Register & Command Data Registers 0-6
The Command Register can be used to issue various commands to the OctoQuad, with up to 7
bytes of related data (to be written to the command operand registers). See the Commands
section.

7.3.4 Channel data registers
These registers contain either quadrature counts or pulse width (in microseconds) for each
channel, depending on the channel bank configuration. In either case, the value for each
channel is a signed 32-bit integer. (Pulse width will, of course, never be negative).

7.3.5 Channel velocity registers
These registers contain signed 16-bit velocity measurements for each channel.

For quadrature encoders, the velocity is defined as the net change in counts during the velocity
sampling interval (see below). For example, if the sampling interval is 100ms and at the
beginning of the interval the encoder count is 1234 and at the end of the interval the count is
1200, then the velocity value reported in the register will be -34. This would indicate a velocity
of -34 counts/0.1s, or -340 counts/s. To determine the velocity in counts/s, user code must
perform the appropriate multiplication factor based on the configured measurement interval.

The velocity sampling interval can be reduced to prevent overflow of the 16-bit counters when
using encoders that output a very large number of steps per second, or, it can be increased to
provide greater velocity precision on low step-rate encoders.

For pulse width input (absolute encoders) velocity is defined as the net change in microseconds
pulse length during the velocity sampling interval. (See discussion of quadrature velocity above).
Wrap-around is tracked internally at a much higher speed than the velocity measurement
interval, so even if an absolute encoder is rotated more than a full rotation during the velocity
measurement interval, the reported velocity will still be correct. Note, however, that when
using an absolute pulse width encoder, the channel pulse width min/max parameter must be
set correctly.

8 Commands

8.1 Description
The Command Register (see register map) may be used to issue various commands to the
OctoQuad, with up to 7 bytes of related data (to be written to the command operand registers).

Not all commands require this extra data. For those that do, the operand register(s) must be
written in the same bus transaction in which the Command Register is written.

8.2 Command List
The following commands are supported:

Command Description Operand 0 Operands 1-6
NO-OP (No command)

Set Parameter Parameter ID Parameter-dependent

Spec. Rev. 3.0.0

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

Page 10 of 16

Get Parameter Parameter ID Parameter-dependent

Save Parameters to flash
Reset Everything

Reset Channels 8-bit channel bitfield

Reset Everything Command

This command resets quadrature encoder counts or measured pulse width to zero, and sets all
parameters to their factory defaults. NOTE: this does not save the newly reset parameters to
flash.

Reset Channels Command

This command zeros quadrature count(s) / pulse width measurement for one or more channels.
The first and only operand is a bitfield mapping to channel numbers. Each bit in the operand
corresponds to a channel, e.g., bit 3 corresponds to channel 3. When issuing this command, for
every bit that is set in the operand, the corresponding encoder’s count will be reset.

Multiple channels can be reset in one command operation. For example, writing 01000001 as
the operand will reset channel 6 and channel 0.

Rese 3 e O and Operand
Bit 7 6 5 4 3 2 1 0
Effect | C7 Reset | C6 Reset | C5 Reset | C4 Reset | C3 Reset | C2 Reset | C1 Reset CO Reset

Set Parameter Command
This command is used to set the value for a parameter. See below section on parameters.

Get Parameter Command
This command is used to get the current value of a parameter. See below section on
parameters.

Save Parameters to Flash Command
This command may be used to save the current value of all parameters to flash, so that they will
be automatically restored after a power cycle.

9 Parameters

9.1 Description

The OctoQuad supports various user-configurable options (“parameters”) which affect its
operation. Parameters are not directly mapped to registers. Parameters may optionally be saved
to flash so that they are automatically restored after a power cycle. (See Save Parameters to Flash
command).

9.2 Parameter List

Parameter ID Name Values

Spec. Rev. 3.0.0

9.3

9.4

9.5

Page 11 of 16

Channel directions Channel bitfield (uint8_t)
12C Recovery mode (uint8_t)

Channel Bank Mode (uint8_t)

I12C Recovery Mode
Channel Bank Config

Interval_ms (uint8_t)
Min_ps (uint16_t)
Max_us (uint16_t)

Channel Velocity Interval

Channel Pulse Width min/max

Setting Parameters

A Parameter may be set by writing the Set Parameter command ID to the command register and
filling the command data registers (sequentially) with the parameter ID, followed by the value(s)
for the parameter. For parameter names in red the parameter values must be preceded by an 8-
bit integer corresponding to the channel index. (l.e. the first command data register filled after
the parameter ID must be the desired channel index, then the parameter value(s) follow in
subsequent command data registers). The general format for setting parameters is as follows:

Setting a Parameter (write to these registers)

Register | Command (0x04) Cmd Data 0 (0x05) Cmd Data 1-6 (0x06 — 0x0B)

Data Set Param (0x01) Param Number Parameter Vals. (1* may be ch idx)

Reading Parameters

Reading the current value of a parameter is accomplished in two steps. First, write the Read
Parameter command ID to the command register and fill the command data register 0 with the
parameter ID to be read. If reading a parameter name in red, then data register 1 must be filled
with a channel index. Once the Read Parameter command has been issued, the current
parameter value will be filled into the command data registers (starting with command data 0)
which can be retrieved with a subsequent read.

Parameter Descriptions

9.5.1 Channel Directions Parameter

This parameter is used to set the quadrature encoder count direction on a per-port basis. It has
no effect on the channel if the channel is operating in pulse width input mode. The first and only
argument is a bitfield mapping to channel numbers. Each bit in the argument corresponds to a
channel, e.g., bit 3 corresponds to channel 3. When issuing this command, for every bit that is
set in the operand, the corresponding encoder channel will be negated.

Multiple channels can be configured one write to this register. For example, writing 01000001 to
the operand will set channel 6 and channel 0 to be negated.

oder Directio Paramete Arg ent O
Bit 7 6 5 4 3 2 1 0
Effect E7 DIR E6 DIR E5 DIR E4 DIR E3 DIR E2 DIR E1DIR EO DIR

Spec. Rev. 3.0.0

9.5.2

9.5.3

9.54

9.55

Page 12 of 16

I2C Recovery Mode Parameter

This parameter is used to set how aggressively the OctoQuad will attempt to un-wedge a hung
I12C bus. It has no effect if the OctoQuad is operating in any interface mode other than 12C. Three
modes are supported:

e 0: The OctoQuad will not attempt to perform any type of recovery for a stuck 12C bus

e 1: Aninter-byte timeout is used for 12C transactions: successive byte transfers must
occur within 50ms of each other in order to prevent the timeout from expiring. If the
timeout expires, the firmware will assume that the bus has become wedged and will
reset the I12C peripheral in an attempt to recover the bus.

e 2:Inter-byte timeout from Mode 1, plus pulling clock low for a small period of time if
1500ms elapses with no communications. May help to un-wedge master-side 12C
hardware on an incredibly glitch/noisy bus.

Channel Bank Mode Parameter

The OctoQuad contains two channel banks, covering channels 0-3 and 4-7. This parameter may
be used to set which mode (quadrature or pulse width measurement) each channel bank is
configured for. Possible values are:

e 0: All quadrature
e 1: All pulse width
e 2: First bank quadrature; second bank pulse width

Channel Velocity Measurement Interval Parameter

This parameter is used to set the time interval at which the velocity is calculated for each
encoder. The value is interpreted directly as milliseconds. For example, setting the value of this
parameter for a channel to the decimal value “40” means that the velocity for the respective
channel will be measured at 40ms intervals. The default interval is 50ms. Setting the sampling
interval to 0 will be disregarded.

Channel Pulse Width min/max Parameter

This parameter is used to inform the firmware of the minimum/maximum pulse lengths that an
absolute encoder will output, to enable accurate velocity calculation. This will default to
1us/1024ps

10 12C Interface

10.1 Overview

The OctoQuad supports operating as a slave on the standard I2C interface, using the register
model. Bus clock rates of up to 400KHz are supported. The OctoQuad’s 12C address is 0x30.

10.2 Registers

Please refer to the register map in section 7.2

10.3 12C Wedged Bus Recovery

The OctoQuad can be configured to attempt recovery of a stuck 12C bus in certain scenarios. See
section 9.5.2 for more details.

Spec. Rev. 3.0.0

https://www.ti.com/lit/an/slva704/slva704.pdf

Page 13 of 16

11 SPI Interface (N/A for FTC Edition)

11.1 Bus Specifications
The OctoQuad can be configured to operate in SPI interface mode, at up to 1MHz clock rate. The
SPI framing format used is Motorola format 3 (Clock high when idle, data latched on rising edge).
The slave select line is high when idle. The slave select line must remain asserted for the entirety
of the transaction. Additionally, the slave select line must be asserted for at least 50us before the
first clock cycle and asserted for at least 50us after the last clock cycle.

11.2 Data Protocol
The general format for SPI communication with the OctoQuad bears some degree of similarity to
communicating with a register-based 12C device, but nonetheless is quite different.

11.2.1 Flag Byte
All data frames sent from the SPI bus master to the OctoQuad (including not only data frames
used to write, but also those used to perform a read) must begin with a special flag byte. This
flag byte is what distinguishes a read from a write. Since SPI is a full-duplex bus (that is, data is
transferred from master to slave and from slave to master simultaneously on every clock) this
flag byte serves as a simple way to differentiate writes and reads.

Flag Meaning

0x57 (ASCIl ‘W’) Master is writing
0x53 (ASCII ‘'S’) Master is writing “sticky” Source Address (see below)
0x52 (ASCII ‘R’) Master is reading

11.2.2 Writing

There are two different types of write operations that the master may perform, and these
operations are implicitly distinguished by the length of the data frame: (a) Write Operation
and (b) Write Source Address operation. Moreover, while the ‘W’ flag may be used for either
operation, the ‘S’ flag may only be used with the Write Source Address operation.

In a Write Operation, the Target Address must immediately follow the ‘W’ flag byte. Data bytes
to be written into memory starting at the Target Address directly follow the Target Address in
the transaction. A Write Operation must provide at least one data byte following the Target
Address. Otherwise, it will be interpreted as a Write Source Address operation.

The general format for a Write Operation is shown below:

Select _\ ﬂ/ /_
MOS! 774 ASCI "W" (TargetAddress Databyte0 /¥ DataByteN ¥
MSO 7 GarbageData | Garbage Data Garbage Data ;ﬂ Garbage Data)

cock [T U U jauuuauury

Spec. Rev. 3.0.0

11.2.3

Page 14 of 16

In a Write Source Address operation, the new Source Address must immediately follow either
the ‘W’ or ‘S’ flag bytes. The master must not send any more bytes following the Source Address;
otherwise, the operation will be interpreted as a Write Operation. The Source Address is the
address in memory from which read operations will begin returning data. The general format for
a Write Source Address operation is shown below:

Select _\ /_

MOSl A AsCI™wror"S") Source Address)
MISO @(Garbage Data X Garbage Data)%

Clock

When performing either type of write operation, the master must ignore all received data from
the OctoQuad.

Reading

All Read Operations begin with the master sending the ‘R’ flag, after which it may continue to
perform N more byte transactions on the bus. All data sent by the master after the ‘R’ flag will
be ignored by the OctoQuad. All Read Operations will begin sending data from the current
Source Address. The first received byte from the OctoQuad (that is, the byte received while the
master is transmitting the ‘R’ flag) will be the Source Address from which the data came. This
means if the master wishes to read N bytes from the OctoQuad memory, it must actually
perform N+1 byte transfer operations on the bus.

What happens after the master has finished performing a Read Operation is determined by
whether the Source Address was set in sticky mode or not. If the Source Address was set in
“sticky” mode, then the Source Address will remain unchanged. If the Source Address was not
set in “sticky” mode, then the Source Address will be incremented by the number of bytes read
during the Read Operation. Using “sticky” mode is helpful should the master wish to repeatedly
read the same block of registers without reading from other locations in-between those reads.
By using “sticky” mode, the master may simply perform the same read sequence repeatedly
without performing a Write Source Address operation.

The general format for a read sequence is shown below:

Select —'\ ﬁ(/_
MOSsI %(ASCII"R" X Garbage Data X Garbage Data fﬂ(Garbage Data)%
MISO 7 X SourceAddress _§___ DataByteO DaaByte 1]| ___ DamaByeN)/

ciock — [TLTUTTUU LU U U U U U U U U Uy Y-

11.3 Register Map

Please refer to the register map in section 7.2

Spec. Rev. 3.0.0

Page 15 of 16

12 USB Serial Interface (N/A for FTC Edition)

12.1 Overview
The OctoQuad module can be configured to provide a USB virtual serial port interface, supporting
the USB CDC ACM protocol. No baud rate configuration is necessary, because the USB interface is
not bridging to a physical UART.

12.2 Protocol
The USB serial protocol is a simple ASCII text-based format. On power-up, the OctoQuad will
begin streaming a CSV string of all quadrature encoder counts to the host at 10Hz. The host can
issue various one-character commands to the OctoQuad to adjust behavior.

12.2.1 Data Format
For quadrature count / pulse width only readings, the string will take the format
“enc0,enc1,enc2,enc3,enc4,enc5,enc6,enc7\r\n”

For count / pulse width & velocity readings, the string will take the format
“enc0,enc1,enc2,enc3,enc4,enc5,enc6,enc7,vell,vell,vel2,veld,veld
,vel5,vel6,vel7\r\n”

The values reported are in base 10 (decimal). An example string with velocity reporting might
look like:

“5897,0,0,3974,0,0,0,0,121,0,0, -230,0,0,0,0\r\n”

In this case, encoder 0 count is 5897, encoder 3 count is 3974, encoder 0 velocity is 121, and
encoder 3 velocity is -230

12.3 Command Table
ASCII Char Effect

Reset all encoder counts

Reset encoder 0 count

Reset encoder 1 count
Reset encoder 2 count

Reset encoder 3 count

Reset encoder 4 count

Reset encoder 5 count

Reset encoder 6 count

Reset encoder 7 count

Enable velocity reporting (following count reporting)
Disable velocity reporting

Set channel bank mode 0 (all quadrature)

Set channel bank mode 1 (all pulse in)

Spec. Rev. 3.0.0

Page 16 of 16

Set channel bank mode 2 (1%t bank Q, 2" bank P)
Set streaming rate to “fast” (60Hz)
Set streaming rate to “medium” (30Hz)

Set streaming rate to “slow” (10Hz)

13 UART Interface (N/A for FTC Edition)

13.1 Overview
The UART interface runs at 115200 baud and mirrors the USB serial interface protocol.

Special Thanks To

e Chris Johannesen: hardware testing
e laina Galayde: OctoQuad logo artwork
e Uday Vidyadharan: help with Python sample code

Spec. Rev. 3.0.0

