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1
Introduction

This manual is meant to be as complete as possible an introduction to the various hardware features
of the F256jr. In it, I will attempt to explain each of the major subsystems of the F256jr and provide
simple but practical examples of their use.

One thing this manual will not provide is a tutorial in programming the 65C02 processor at the heart
of the F256jr. There are plenty of excellent books and videos explaining how the processor works and
how to do assembly programming. While examples will generally be written in assembly, I will try
to annotate them fully so that what is happening is very clear even to the novice assembly language
coder.

Several of chapters in this manual include example assembly code to show how the various features
of the F256jr work. While the code included in the text should be runnable, the complete examples can
be found on the Github repository that hosts the manual itself. Most of the examples are able to run on
their own, but a few of them expect there to be some sort of operating system providing text display
routines compatible with the old Commodore kernel. The examples were all written on a machine
using OpenKERNAL, which was written for the F256jr, but really anything that provides the CINT and
CHROUT calls should work fine. Of course, the examples could be tweaked without too much trouble
to run on essentially any operating system.

About the Machine

Ports
The connectors of the back of the F256jr from left to right are (see figure: 1.1):

Audio Line Out the stereo audio output. These are standard RCA style line level outputs.

SD Card Slot for standard SD cards for storage of files and programs.

DVI Monitor Port for output to your monitor. This can be connected to the DVI input of a monitor or
run through a simple DVI-VGA connector to use with an older VGA input.

IEC Serial Port supports the Commodore serial bus. A Commodore disk drive (1541, 1571, 1581, etc.),
a Commodore compatible serial printer, or other device supporting the Commodore serial bus
can be connected here.

The top of the board has several connectors and other features that should be explained (see fig-
ure: 1.2):

Power In this is a standard ITX/ATX style power connector. Pretty much any PC power supply should
work here, and a Pico-ATX style power adapter is more than sufficient.

Debug USB Port this provides access to the debug interface of the F256jr for a desktop computer. You
can use it to upload data to the F256jr’s memory or examine the memory. There is a Mini USB B
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Audio Line Out

SD Card Slot

DVI Monitor Port

PS/2 Port

IEC Serial Port

Figure 1.1: F256jr Rear Connectors

connector on the board, but there is also a header that can be used to connect the USB jack on
some cases to the board.

Case Buttons and LEDs this collection of headers is used to connect the power and reset button from
the case as well as the power LED and SD access LED.

Joystick Ports these connectors can be used with a standard IDC to DB-9 adapter cable (such as was
used by some PCs to provide RS-232 serial ports) to provide Atari style joystick connectors.

DIP Switches these switches allow you to manage certain aspects of the F256jr. In particular, you can
control gamma correction and some boot options, depending on the kernel installed.

Stereo SIDs out of the box, these will be bare sockets, but they are where you would install your SID
chips or SID emulators. The sockets support the original 6581, the lower voltage 8581, and the
different replacements like the SwinSID, ARMSID, and BackSID.

Wi-Fi Module this optional module works with the built-in serial port to allow for Wi-Fi access, if a
program or operating system supports it.

RS-232 Port this IDC header works with a standard IDC to DB-9 adapter cable to provide an RS-232
serial port. The same serial port is used for this port as is used by the Wi-Fi module, so only one
of the two can be used at a time.

GPIO this header provides access to the I/O pins of the WDC65C22 VIA. The pin assignments are com-
patible with the Commodore C64 keyboard connector.

Expansion Port for future expansion. This is a PCI-E style connector with a custom pinout. In the
future, it might be used for memory expansion or other devices.

Clock Battery this CR2032 cell holder provides power for the real time clock chip.

FPGA JTAG Port this connector is used to apply any future updates to the FPGA. A special adapter
would need to be used to connect to this port.

Gamepad Ports this header provides access for an NES or SNES style gameport interface.

Case Audio Port this header provides access to the headphone and microphone signals to connect to
a PC case.

Headphone Out this is a standard headphone adapter port that can be used if the case does not pro-
vide headphone output.
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Figure 1.2: F256jr Top View

System Architecture
For being so small, the F256jr has a lot of components to it, so it is worth mapping out the over all struc-
ture of the computer. One of the main things to note is that most of what makes the F256jr the F256jr is
the FPGA TinyVicky. TinyVicky provides the MMU, the various text and graphics engines, most of the
I/O devices, controllers for the sound chips, and the controller for the first 256KB of SRAM. The CPU,
VIA, RTC, flash memory, and expansion RAM are separate from TinyVicky, although TinyVicky is still
responsible for translating CPU addresses to the appropriate chip selection logic and bank selection.
One of the most important aspects of this architecture is that, while the first 256KB of SRAM is acces-
sible to both the CPU and TinyVicky, TinyVicky cannot access the data in the flash or in any expansion
RAM.
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2
Memory Management

The F256jr has 256 KB of system RAM which can be used for programs, data, and graphics. It also has
512 KB of read-only flash memory that can be used by whatever operating system is installed. Now,
the 65C02 CPU at the heart of the F256jr has an address space of only 64 KB, so how can it access all this
memory, not to mention the I/O devices on the system? The answer is paging. The F256jr has a special
memory management unit (MMU) that can swap banks of memory or I/O registers into and out of the
memory space of the CPU.

To understand how it all works, we first need to look at how RAM and flash memory are handled
by the F256jr. Because there are 768 KB of total storage on the system, the system has a 20-bit address
bus to manage the memory. RAM and flash have address on that 20-bit bus as shown in table 2.1.

Start End Memory Type
0x00000 0x3FFFF System RAM (256 KB)
0x40000 0x7FFFF Reserved for future use (256 KB)
0x80000 0xFFFFF Flash Memory (512 KB)

Table 2.1: C256jr memory layout

This memory is divided up into “banks” of 8 KB each. The 16-bit address space of the CPU is also
divided up into 8 KB banks. The MMU allows the program to assign any bank of system memory to any
bank of the CPU’s memory. It does this through the use of memory look-up tables (LUT), which provide
the upper bits needed to select the bank out of system memory for any given bank in CPU memory.
It takes 13 bits to specify an address within 8 KB, which means for a 16-bit address from the CPU, the
upper 3 bits are the bank number. Since the system bus is 20 bits, a bank number there are 7 bits. So
a LUT must provide a 7-bit system bank number for each 3-bit bank number provided by the CPU.

The F256jr’s MMU supports up to four LUTs, only one of which is active at any given moment. This
allows programs to define four different memory layouts and switch between them quickly, without
having to alter a LUT on the fly.

Of the eight CPU memory banks, one is special. Bank 6 can be mapped to memory as the rest can,
or it can be mapped to I/O registers, which are not memory mapped in the same way as RAM and flash.
All I/O devices on the F256jr therefore live within 0xC000 through 0xDFFF on the CPU, but only if the
MMU is set to map I/O to bank 6. There is quite a lot of I/O to access on the F256jr, so there are four
different banks of I/O registers and memory that can be mapped to bank 6 (see table 2.3).

The MMU is controlled through two main registers, which are always at locations 0x0000 and
0x0001 in the CPU’s address space (see table 2.4). These registers allow programs to select an active
LUT, edit a LUT, and control bank 6:

ACT_LUT these two bits specify which LUT (0 - 3) is used to translate CPU bus address to system bus
addresses.

EDIT_EN if set (1), this bit allows a LUT to be edited by the program, and memory addresses 0x0010 -
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Bank A[15..13] Start End
0 000 0x0000 0x1FFF
1 001 0x2000 0x3FFF
2 010 0x4000 0x5FFF
3 011 0x6000 0x7FFF
4 100 0x8000 0x9FFF
5 101 0xA000 0xBFFF
6 110 0xC000 0xDFFF
7 111 0xE000 0xFFFF

Table 2.2: CPU Memory Banks

I/O Bank Purpose
0 Low level I/O registers
1 Text display font memory and graphics color LUTs
2 Text display character matrix
3 Text display color matrix

Table 2.3: I/O Banks

0x0017 will be used by the LUT being edited. If clear (0), those memory locations will be standard
memory locations and will be mapped like the rest of bank 0.

EDIT_LUT if EDIT_EN is set, these two bits will specify which LUT (0 - 3) is being edited and will appear
in memory addresses 0x0010 - 0x0017.

IO_DISABLE if set (1), bank 6 is mapped like any other memory bank. If clear (0), bank 6 is mapped
to I/O memory.

IO_PAGE if IO_DISABLE is clear, these two bits specify which bank of I/O memory (0 - 3) is mapped to
bank 6.

Example: Setting up a LUT
In this example, we will set up LUT 1 so that the first six banks of CPU memory map to the first banks
of RAM, bank 7 of CPU memory maps to the first bank of flash memory, and bank 6 maps to the first
I/O bank.

lda #$90 ; Active LUT = 0, Edit LUT#1
sta $0000

ldx #0 ; Start at bank 0
l1: txa ; First 6 banks will just be the first banks of RAM

sta $0008,x ; Set the LUT mapping for this bank
inx ; Move to the next bank
cpx #6 ; Until we get to bank 6
bne l1

lda #$40 ; Bank 7 maps to $80000, first bank of flash
sta $0017

stz $0001 ; Bank 6 should be I/O bank 0

lda #$01 ; Turn off LUT editting, and switch to LUT#1
sta $0000
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Address R/W Name 7 6 5 4 3 2 1 0
0x0000 RW MMU_MEM_CTRL EDIT_EN — EDIT_LUT — — ACT_LUT
0x0001 RW MMU_IO_CTRL — IO_DISABLE IO_PAGE

Table 2.4: MMU Registers

MMU Boot Configuration
While the MMU registers allow the MMU to select one of four memory LUTs to be used for address
translation or to be edited, in fact the F256jr’s MMU actually has eight LUTs in two sets of four. At any
given time, only one of those sets of four LUTs is active. One set of LUTs is the “boot from RAM” set,
and the other is the “boot from flash” set. As the names imply, one set is meant to allow you to boot the
F256jr to run code you have loaded into RAM (useful for development and debugging), while the other
is meant to be used to boot up an operating system you have loaded into flash memory (useful for just
running programs and playing games).

When the F256jr powers on, it initializes the LUTs in two different ways. The “boot from RAM” LUTs
are initialized so the 64KB of CPU address space is simply mapped to the first 64KB of system RAM. The
“boot from flash” LUTs are initialized to be the same, except that the last bank of CPU address space
(0xE000 – 0xFFFF) is mapped to the last bank of flash memory (0x7E000 – 0x7FFFF). After the LUTs are
initialized, the F256jr checks to see which of the two sets of LUTs should be used and enables them.
The memory LUTs that are not selected are completely ignored. See figure 2.1 to see how the LUTs are
related and how they are initialized on power up.

How the F256jr decides which set of LUTs to use depends upon the board. The older, RevA boards
have a command available over the USB debug port that switches the active LUTs on the fly. The newer,
RevB boards have a jumper to choose between the LUTs.

NOTE: the memory LUTs are really just tables stored in RAM in the TinyVicky chip, and apart from
the power-up initialization, TinyVicky does not change the LUTs except when directed by a program.
Pressing the RESET button does not re-initialize the LUTs. This means that a program should not as-
sume the LUTs are set to any particular value on reset, unless the operating system is initializing the
LUTs. A program running as an operating system or even just taking complete control over the board
should always initialize the LUTs to the values it needs as one of its first tasks. Of course, a complete
power cycle of the board will reset the LUTs, but a program will not always be starting from a complete
power cycle.
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Figure 2.1: MMU Boot Configuration



3
The Text Screen

The display on the F256jr is managed by TinyVicky, which is the smaller member of the Vicky family
of display controllers in the other Foenix machines. TinyVicky provides several display engines to let
your programs control the screen:

• Text: an old school style text screen where the characters to display are stored in a text matrix,
and the shape of those characters comes from font memory. Text mode characters are 8 pixels
wide by 8 pixels high.

• Bitmap: a simple pixel graphics mode that can be either 300x240 or 300x200.

• Sprite: an engine to display small, movable sprites on the screen.

• Tile: an engine to display images on the screen made up of tiles from a tile set.

The bitmap, sprite, and tile engines are considered graphics modes. TinyVicky will let you display
either text by itself, a mix of the graphics modes by themselves, or text overlaid on top of the graphics
modes.

3.1 Text Matrix
The memory for the characters to display on the screen is the text matrix, which is stored in I/O page 2.
When this I/O page is swapped into the CPU address space, it appears at 0xC000. Each byte of memory
corresponds to a single character on the screen in left to right, top to bottom order. The byte at 0xC000
is the upper left corner of the screen, the byte at 0xC001 is the next character to the right, and so on. The
number of bytes per line is set by the base resolution of the screen, but is generally 80. When a border
is displayed, while that limits the number of characters displayed, the layout in memory remains the
same.

The text screen has two core resolutions, tied to the refresh rate of the screen: 80 by 60 at 60 Hz,
and 80 by 50 at 70 Hz. Beyond that, the character display may be made double width or double height,
or both. This gives the following possible character displays: 80 × 60, 40 × 60, 80 × 30, 40 × 30, 80 × 50,
40 × 50, 80 × 25, and 40 × 25.

Example: Print an A to the Screen
lda $0001 ; Save the current MMU setting
pha

lda #$02 ; Swap I/O Page 2 into bank 6
sta $0001

lda #’A’ ; Write ’A’ to the upper left corner

15



sta $C000

pla ; Restore the old MMU setting
sta $0001

Note: this example does not set the font or the color, so depending on how your F256jr is initialized,
you may not see an actual “A” on the screen.

3.2 Text Color LUTs
Characters in TinyVicky text mode have two colors: the foreground and the background. The fore-
ground and background colors are picked for each character out of two different palettes of 16 colors
each. The colors in the palettes are picked from the full range of colors F256jr can produce, which is
more than 16 million colors. This is all managed through two color lookup tables (LUTs) provided by
TinyVicky: a text foreground color LUT, and a text background color LUT.

The text LUTs are stored in I/O page 0. The foreground LUT starts at 0xD800, and the background
LUT starts at 0xD840.

Each LUT is a list of 16 entries. Each entry is a set of four bytes: blue, green, red, and alpha. Each
byte indicates how much of that primary color is present as a component of the actual color. The values
range from 0 (none) to 255 (as much as possible). Currently, the alpha channel is not used and is there
for future expansion.

Index R/W Foreground Background 0 1 2 3
0 W 0xD800 0xD840 BLUE_0 GREEN_0 RED_0 X
1 W 0xD804 0xD844 BLUE_1 GREEN_1 RED_1 X
2 W 0xD808 0xD848 BLUE_2 GREEN_2 RED_2 X
3 W 0xD80C 0xD84C BLUE_3 GREEN_3 RED_3 X
4 W 0xD810 0xD850 BLUE_4 GREEN_4 RED_4 X
5 W 0xD814 0xD854 BLUE_5 GREEN_5 RED_5 X
6 W 0xD818 0xD858 BLUE_6 GREEN_6 RED_6 X
7 W 0xD81C 0xD85C BLUE_7 GREEN_7 RED_7 X
8 W 0xD820 0xD860 BLUE_8 GREEN_8 RED_8 X
9 W 0xD824 0xD864 BLUE_9 GREEN_9 RED_9 X

10 W 0xD828 0xD868 BLUE_10 GREEN_10 RED_10 X
11 W 0xD82C 0xD86C BLUE_11 GREEN_11 RED_11 X
12 W 0xD830 0xD870 BLUE_12 GREEN_12 RED_12 X
13 W 0xD834 0xD874 BLUE_13 GREEN_13 RED_13 X
14 W 0xD838 0xD878 BLUE_14 GREEN_14 RED_14 X
15 W 0xD83C 0xD87C BLUE_15 GREEN_15 RED_15 X

Table 3.1: Text Color Lookup Tables

3.3 Color Matrix
The way that text color is selected for each character is through the color matrix. This section of mem-
ory is in I/O page 3 and starts at 0xC000 when page 3 is swapped into the CPU’s address space. The
layout is precisely the same as the text matrix (e.g. the character at 0xC123 in the text matrix has its
color information at 0xC123 in the color matrix).

Each byte in the color matrix specifies two colors by providing an index into each of the two text
LUTs. The most significant four bits is the number of the foreground color to use. The number of the
least significant four bits is the number of the background color to use.

Let’s say the color value at 0xC123 is 0x45. This means that the foreground color of the character
is color 4 from the text foreground LUT, which starts at 0xD810 (0xD800 + 4 * 4), and the background
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color of the character is 5 from the text background LUT, which starts at 0xD854 (0xD840 + 4 * 5). If the
bytes at 0xD810 are 0x00, 0x80, 0x80, that means the foreground will be a medium yellow. If the bytes
at 0xD854 are 0xFF, 0x00, 0x00, that means the background will be blue.

Example: Make That “A” Yellow on Blue
lda $0001 ; Save the MMU state
pha

stz $0001 ; Switch in I/O Page #0

stz $D810 ; Set foreground #4 to medium yellow
lda #$80
sta $D811
sta $D812

lda #$FF ; Set background #5 to blue
sta $D854
stz $D855
stz $D856

lda #$03 ; Switch to I/O page #3 (color matrix)
sta $0001

lda #$45 ; Color will be foreground=4, background=5
sta $C000

pla ; Restore the MMU state
sta $0001

3.4 Entering Text Mode
Whether text mode is being displayed (and in what resolution) is controlled by the VICKY Master Con-
trol Registers (see table 3.2). For now, we’re going to ignore most of the bits, which are used by other
display modes. For text mode, we really only care about the TEXT bit, which needs to be set to turn on
the text display. The resolution is controlled by DBL_Y, DBL_X, and CLK_70. If we set 0xD000 to 0x01
and 0xD001 to 0x00, that will put us into text mode at 80 × 60.

Address R/W 7 6 5 4 3 2 1 0
0xD000 R/W X GAMMA SPRITE TILE BITMAP GRAPH OVRLY TEXT
0xD001 R/W X DBL_Y DBL_X CLK_70

Table 3.2: VICKY Master Control Registers

TEXT if set (1), text mode display is enabled

OVRLY if set, text will be overlaid on graphics

GRAPH if set, one or more of the graphics modes may be used

BITMAP if set (and GRAPHICS is set), bitmap graphics may be displayed

TILE if set (and GRAPHICS is set), tile graphics may be displayed

SPRITE if set (and GRAPHICS is set), sprite graphics may be displayed

GAMMA if set, gamma correction is enabled



CLK_70 if set, the video refresh will be set to 70 Hz mode (640x400 text resolution, 320x200 graphics).
If clear, the video refresh will be set to 60 Hz (640x480 text resolution, 320x240 graphics).

DBL_X if set, text mode characters will be twice as wide (320 pixels)

DBL_Y if set, text mode characters will be twice as high (240 or 200 pixels, depending on CLK_70)

3.5 Text Fonts
Character shapes (or “glyphs,” if you prefer) are defined in font memory, which is in I/O page 1 and
starts at 0xC000. The F256jr treats each character as a square of pixels, 8 pixels on a side. A pixel may
be either in the foreground color for the character or in the background color for the character. The
way this is managed is that each character has a sequence of eight bytes in the font memory. Each byte
represents a row in the character, and each bit represents a pixel in the row (■ for foreground, □ for
background).

As an example, let’s say we wanted to have a fancy “F” for character 0:

□ □ □ ■ ■ ■ ■ ■ 0x1F
□ □ ■ ■ □ □ □ □ 0x30
□ □ ■ ■ □ □ □ □ 0x30
□ ■ ■ ■ ■ ■ □ □ 0x7C
□ ■ ■ □ □ □ □ □ 0x60
■ ■ □ □ □ □ □ □ 0xC0
■ ■ □ □ □ □ □ □ 0xC0

Table 3.3: A sample character

The glyph to display would be defined by the eight byte sequence 0x1F, 0x30, 0x30, 0x7C, 0x60, 0xC0,
0xC0. We would store that sequence in I/O page 0, starting at 0xC000 (0x1F), through 0xC007 (0xC0).
After that was set, any time the byte 0x00 is written to screen memory, the glyph “F” would be displayed
in that position.

3.6 Text Cursor
F256jr has a text mode cursor. The text mode cursor is implemented as a character which is displayed
in a (𝑥, 𝑦) position on the screen, visually replacing the character ordinarily at that position. It may
be displayed continuously, or it may flash at one of four rates. When flashing, that position in the text
screen will alternate between the text cursor and the character at that position in the text matrix. The
color for the text cursor comes from the color for the position on the screen as specified in the color
matrix. In other words, the text cursor does not have its own color.

Address R/W Name 7 6 5 4 3 2 1 0
0xD010 R/W CCR — FLASH_EN RATE ENABLE
0xDC12 R/W CCH Cursor character
0xDC14 R/W CURX X7 X6 X5 X4 X3 X2 X1 X0
0xDC15 R/W X15 X14 X13 X12 X11 X10 X9 X8
0xDC16 R/W CURY Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
0xDC17 R/W Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8

Table 3.4: Text Cursor Registers

ENABLE if this flag is set (1), the cursor is enabled

FLASH_EN if this flag is set (1), the cursor will flash. If clear (0), it will just be steady
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RATE these two bits set the rate at which the cursor flashes (see table 3.5)

CCH the character code for the cursor character to display

CURX the column number (16-bit) for the cursor

CURY the row number (16-bit) for the cursor

RATE1 RATE0 Rate
0 0 1s
0 1 1/2s
1 0 1/4s
1 1 1/5s

Table 3.5: Text Cursor Flash Rates





4
Graphics

The F256jr provides three separate graphics engines, providing programs with a choice in how they dis-
play information to the user. Those different engines do share certain features, however, and this chap-
ter will cover the common elements. The three graphics engines are bitmaps, tile maps, and sprites.
What is common between all these elements is how they determine what colors to display and how to
determine, when two or more objects are in the same place, which object is displayed.

• Bitmaps are simple raster images. They are the size of the screen (320 × 200 or 320 × 240) and
cannot be moved. The TinyVicky chip used by the F256jr allows for three separate bitmaps to be
displayed at the same time.

• Tile maps are images made up of tiles. The tiles come in a tile set, which is a raster image like
a bitmap but provides 256 tiles. The tile map itself creates its image by indicating which tile is
displayed at every position in the tile map. This mapping can be changed on the fly, allowing
tile maps to be altered, and tile maps can also be scrolled horizontally and vertically to a limited
degree. This allows for possibility for smooth scrolling of a tile map scene. TinyVicky allows for
three separate tile maps to be displayed simultaneously.

• Sprites are small, square graphics elements that may be moved to any position on the screen.
Sprites are typically used to represent game characters or very mobile UI elements. TinyVicky
sprites may be 8, 16, 24, or 32 pixels on a side. There may be as many as 64 sprites active on the
screen at once (without using special techniques).

4.1 Graphics Colors
The graphics modes use a color lookup system similar to text mode to determine colors. The pixel data
for a tile, bitmap, or sprite is composed of bytes, where each byte specifies the color of that pixel. The
byte serves as an index into a color lookup table where the red, green, and blue components of the
desired color are stored (see figure: 4.1). As with text, the color components are bytes and specify an
intensity from 0 (none of that primary color) to 255 (as much of that primary color as possible). Also,
as with text, there is a fourth byte that is reserved for future use, meaning that each color takes up four
bytes in the CLUT. In short, the byte order of a graphics CLUT entry is exactly the same as for a text
CLUT.

However, there is a key difference from text mode. In text mode, there are two colors (foreground
and background), and each color is one out of sixteen possibilities. With graphics modes, there are
256 possibilities. So a CLUT with only 16 entries will not work. There are therefore separate CLUTs for
graphics. TinyVicky provides for four separate graphics CLUTs with 256 entries. Each graphic object
on the screen specifies which graphics CLUT it will use for its colors. These CLUTs may be found in I/O
page 0 (see table: 4.1).
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Figure 4.1: Bitmap Data to Pixels

Address R/W Purpose
0xD000 R/W Graphics CLUT 0
0xD400 R/W Graphics CLUT 1
0xD800 R/W Graphics CLUT 2
0xDC00 R/W Graphics CLUT 3

Table 4.1: Graphics Color Lookup Tables

Example: A Simple Gradient
Let’s set up a CLUT so that we have the colors for a gradient fill between red and blue. In this example,
pointer is a two byte variable down in zero page, which will be used to point to the first byte of the
CLUT entry the code is updating. The Y register is being used to point to the individual components of
the entry.

MMU_IO_CTRL = $0001 ; MMU I/O Control Register
VKY_GR_CLUT_0 = $D000 ; Graphics LUT #0

;
; Initialize the LUT to greyscale from (255, 0, 0) to (0, 0, 255)
;

lda #$01 ; Set the I/O page to #1
sta MMU_IO_CTRL

lda #<VKY_GR_CLUT_0 ; pointer will be used to point to a particular LUT entry
sta pointer
lda #>VKY_GR_CLUT_0
sta pointer+1

ldx #0 ; Start with blue = 0

lut_loop: ldy #0 ; And start at the offset for blue
txa ; Take the current blue color level



CHAPTER 4. GRAPHICS 23

sta (pointer),y ; Set the blue component
iny

lda #0
sta (pointer),y ; Set the green component to 0
iny

txa ; Get the blue component again
eor #$ff ; And compute the 2’s complement of it
inc a
sta (pointer),y ; Set the red component
iny

inx ; Go to the next color
beq lut_done ; If we are back to black, we’re done with the LUT

clc ; Move pointer to the next LUT entry (+ 4)
lda pointer
adc #4
sta pointer
lda pointer+1
adc #0
sta pointer+1

bra lut_loop

lut_done:

4.2 Pixel Data
All three graphics engines arrange their pixel data in the same manner. They all use rectangular raster
images as a base, although the width and height of the rectangle can vary. The pixels are placed in
memory in sequential order in left-to-right and top-to-bottom order. That is, the first pixel in the se-
quence is the upper-left pixel in the image. The next pixel is the pixel to the immediate right and so on.
If the image is 𝑤 × ℎ, the position of a pixel at (𝑥, 𝑦) in the list is 𝑦 × 𝑤 + 𝑥.

4.3 Graphics Layers
Now, what happens if two sprites take up the same position or if a program displays a tile map and a
bitmap together? How does TinyVicky determine what color to display at a given position? TinyVicky
provides a flexible layering system with several layers. Elements in “near” layers (lower numbers) get
displayed on top of elements in “far” layers (higher numbers). If a sprite in layer 0 says a pixel should
be blue while a tile in layer 1 says it should be red, the pixel will be blue. Color 0, however, is special. It
is always the transparent “color”. A pixel that is 0 in an element will be the color of whatever is behind
it (or the global background color, if there is nothing behind it).

TinyVicky provides for seven layers, but they are split up a bit. Three of the layers are for bitmaps
and tile maps. Only one bitmap or tile map can be placed in any of those three layers. The other four
layers are for sprites only. Any sprite can be assigned to any of the sprite layers, and there can be
multiple sprites in a layer. The sprite layers are interleaved with the bitmap and tile map layers (see
figure: 4.2).

Bitmaps and tile maps are assigned to their layers using the layer control registers (see table: 4.2).
The three fields LAYER0, LAYER1, and LAYER2 in the layer registers are three bit values, which indicate
which graphical element to assign to that layer (see table: 4.3).



Figure 4.2: TinyVicky Graphic Layers

Address R/W 7 6 5 4 3 2 1 0
0xD002 R/W — LAYER1 — LAYER0
0xD003 R/W — LAYER2

Table 4.2: Bitmap and Tile Map Layer Registers

Example: Put Bitmap 0 on Layer 0
As an example of how to use layers, we can set things up for future examples by putting bitmap 0 in
the front layer (0), tile map 0 in the next layer (1), and bitmap 1 in the back layer (2).

lda #$20 ; Layer 0 = BM 0, Layer 1 = TM 0
sta VKY_LAYER_CTRL_0
lda #$01 ; Layer 2 = BM 1
sta VKY_LAYER_CTRL_1

4.4 Bitmaps
TinyVicky allows for three full screen bitmaps to be displayed at once. These bitmaps are either 320 ×
200 or 320 × 240, depending on the value of the CLK_70 bit of the master control register. A bitmap’s
pixel data contains either 64,000 bytes, or 76,800 bytes of data. In both cases, the pixel data is arranged
from left to right and top to bottom. The first 320 bytes are the pixels of the first line (with the first pixel
being the left-most). The second 320 bytes are the second line, and so on. Additionally, the bitmaps can
independently use any of the four graphics CLUTs to specify the colors for those indexes. TinyVicky
provides registers for each bitmap set the CLUT and the address of the bitmap:

ENABLE if set and both graphics and bitmaps are enabled in the Vicky Master Control Register (see
table 3.2), then this bitmap will be displayed.

CLUT sets the graphics color lookup table to be used for this bitmap

AD give the address of the first byte of the pixel data within the 256 KB system RAM. Note that this
address is relative to the system bus of 20 bits and is not based on the CPU’s addressing.
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Code Layer
0 Bitmap Layer 0
1 Bitmap Layer 1
2 Bitmap Layer 2
4 Tile Map Layer 0
5 Tile Map Layer 1
6 Tile Map Layer 2

Table 4.3: Bitmap and Tile Map Layer Codes

Address R/W Bitmap 7 6 5 4 3 2 1 0
0xD100 R/W

0

— CLUT ENABLE
0xD101 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD102 R/W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD103 R/W — AD17 AD16
0xD108 R/W

1

— CLUT ENABLE
0xD109 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD10A R/W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD10B R/W — AD17 AD16
0xD110 R/W

2

— CLUT ENABLE
0xD111 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD112 R/W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD113 R/W — AD17 AD16

Table 4.4: Bitmap Registers

To set up and display a bitmap, the following things need to be done. The order is not terribly
important, although updates to the bitmap’s pixel data after the bitmap is displaying will be visible.
That could be desirable, depending on what the program is doing.

1. Enable bitmap graphics in the TinyVicky Master Control Register (see table: 3.2). This means you
need to set both the GRAPH and BITMAP bits and either clear TEXT or set the OVRLY to display
text and bitmap together.

2. Set up the pixel data for the bitmap somewhere in the first 256 KB of RAM.

3. Set the address of the bitmap’s pixel data in the AD field.

4. Assign the bitmap to a layer using the layer control registers (see table: 4.2).

5. Set the bitmap’s CLUT and ENABLE bit in its control register.

Example: Display a Bitmap
This example will build on the previous examples of setting up the CLUT and display a gradient on the
screen. First, it needs to turn on the bitmap graphics:

MMU_MEM_CTRL = $0000 ; MMU Memory Control Register
MMU_IO_CTRL = $0001 ; MMU I/O Control Register
VKY_MSTR_CTRL_0 = $D000 ; Vicky Master Control Register 0
VKY_MSTR_CTRL_1 = $D001 ; Vicky Master Control Register 1
VKY_BM0_CTRL = $D100 ; Bitmap #0 Control Register
VKY_BM0_ADDR_L = $D101 ; Bitmap #0 Address bits 7..0
VKY_BM0_ADDR_M = $D102 ; Bitmap #0 Address bits 15..8
VKY_BM0_ADDR_H = $D103 ; Bitmap #0 Address bits 17..16



bitmap_base = $10000 ; The base address of our bitmap

stz MMU_IO_CTRL ; Go back to I/O page #0

lda #$0C ; enable GRAPHICS and BITMAP. Disable TEXT
sta VKY_MSTR_CTRL_0 ; Save that to VICKY master control register 0
stz VKY_MSTR_CTRL_1 ; Make sure we’re just in 320x240 mode (VICKY master control register 1)

Next, it needs to set up the bitmap: setting the address, CLUT, and enabling the bitmap:

;
; Turn on bitmap #0
;

stz VKY_BM1_CTRL ; Make sure bitmap 1 is turned off

lda #$01 ; Use graphics LUT #0, and enable bitmap
sta VKY_BM0_CTRL

lda #<bitmap_base ; Set the low byte of the bitmap’s address
sta VKY_BM0_ADDR_L
lda #>bitmap_base ; Set the middle byte of the bitmap’s address
sta VKY_BM0_ADDR_M
lda #‘bitmap_base ; Set the upper two bits of the bitmap’s address
and #$03
sta VKY_BM0_ADDR_H

Now, the code needs to create the pixel data for the gradient in memory. This is a bit tricky on
the F256jr, because the program is using the larger 320 × 240 screen, which requires more than 64 KB
of memory. In order to write to the entire bitmap, the program will have to work with the MMU to
switch memory banks to access the whole bitmap. The program will use bank 1 (0x2000 – 0x3FFF) as
its window into the bitmap, which will start at 0x10000. It will walk through the memory byte-by-byte,
setting each pixel’s color based on what line it is on (tracked in a line variable). Once it has written a
bank’s worth of pixels (8 KB), it will increment the bank number and update the MMU register. Once
it has written 240 lines, it will finish.

NOTE: in the following code, bm_bank and line are byte variables, and pointer and column are
two-byte variables in zero page (although really only pointer has to be there).

; Set the line number to 0
stz line

; Calculate the bank number for the bitmap
lda #(bitmap_base >> 13)
sta bm_bank

bank_loop: stz pointer ; Set the pointer to start of the current bank
lda #$20
sta pointer+1

; Set the column to 0
stz column
stz column+1

; Alter the LUT entries for $2000 -> $bfff

lda #$80 ; Turn on editing of MMU LUT #0, and work off #0
sta MMU_MEM_CTRL
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lda bm_bank
sta MMU_MEM_BANK_1 ; Set the bank we will map to $2000 - $3fff

stz MMU_MEM_CTRL ; Turn off editing of MMU LUT #0

; Fill the line with the color..

loop2: lda line ; The line number is the color of the line
sta (pointer)

inc_column: inc column ; Increment the column number
bne chk_col
inc column+1

chk_col: lda column ; Check to see if we have finished the row
cmp #<320
bne inc_point
lda column+1
cmp #>320
bne inc_point

lda line ; If so, increment the line number
inc a
sta line
cmp #240 ; If line = 240, we’re done
beq done

stz column ; Set the column to 0
stz column+1

inc_point: inc pointer ; Increment pointer
bne loop2 ; If < $4000, keep looping
inc pointer+1
lda pointer+1
cmp #$40
bne loop2

inc bm_bank ; Move to the next bank
bra bank_loop ; And start filling it

done: nop ; Lock up here
bra done





5
Sprites

In addition to bitmaps and tiles, the F256jr provides support for sprites, which are mobile graphical
objects that can appear anywhere on the screen. F256jr sprites are similar to the sprites on the Com-
modore 64 or player-missile graphics on the 8-bit Atari computers, but they are more flexible than
either of those. A sprite is essentially a little bitmap that can be positioned anywhere on the screen.
Each one can come in one of four sizes: 8 × 8, 16 × 16, 24 × 24, or 32 × 32. Each one can display up to
256 colors, picked from one of the four graphics color lookup tables.

A program for the F256jr can use up to 64 sprites, each one of which is controlled by a block of
sprite control registers. The sprite control registers are in I/O page 0, and start at 0xD900. Each sprite
takes up 8 bytes, so sprite 0 starts at 0xD900, sprite 1 starts at 0xD908, sprite 2 at 0xD910, and so on.
The registers for each sprite are arranged within that block of 8 bytes as shown in table 5.1.

Offset R/W Name 7 6 5 4 3 2 1 0
0 W Sprite Control — SIZE LAYER LUT ENABLE
1 W

Sprite Address
AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

2 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
3 W — AD17 AD16
4 W Sprite X X7 X6 X5 X4 X3 X2 X1 X0
5 W X15 X14 X13 X12 X11 X10 X9 X8
6 W Sprite Y Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
7 W Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8

Table 5.1: Sprite Registers for a Single Sprite

These registers manage seven fields:

ENABLE if set, this particular sprite will be displayed (assuming the graphics and sprite engines are
enabled in the Vicky Master Control Register).

LUT selects the graphics color lookup table to use in assigning colors to pixels

LAYER selects which sprite layer the sprite will be displayed on

SIZE selects the size of the sprite (see table 5.2)

AD the address of the bitmap (must be within the first 256 KB of RAM). The address is based on the
24-bit system bus, not the CPU’s address space.

X the X coordinate where the sprite will be displayed (corresponds to the sprite’s upper-left corner)

Y the Y coordinate where the sprite will be displayed (corresponds to the sprite’s upper-left corner)
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SIZE Meaning
0 0 32 × 32
0 1 24 × 24
1 0 16 × 16
1 1 8 × 8

Table 5.2: Sprite Sizes

5.1 Sprite, Layers, and Display Priority
While a sprite can be assigned to any of four layers, this layer is only used for determining how the
sprite interacts with bitmap or tile map graphics and not how sprites layer with each other. When
sprites “collide,” a built-in sprite priority order is used to determine which sprite determines a pixel’s
color. When two sprites are both trying to set the color of a pixel on the screen, the sprite with the
lowest number is the one that determines the color. For example, if sprite 0 and sprite 5 are in the
same location, it is sprite 0 that will display in the foreground. The sprite layers cannot be used to
change this.

The best practice for assigning sprites is to place the images that need to be on top in the first sprites
and those that need to be in the back in the higher numbered sprites. Use the LAYER field for the sprites
to control how the sprites layer with the tile maps and bitmaps.

5.2 Sprite Positioning
The coordinate system for sprites is similar to that for bitmap graphics, but it is offset by 32 pixels in
both the horizontal and vertical directions. There is a sort of margin area around the entire displayed
screen that a sprite can be in and be either partially or completely hidden from view. The horizontal
coordinate for a sprite ranges from 0 to 352. The vertical coordinate can range from 0 to 232 or 272,
depending on the vertical resolution. For a sprite to have its top-left corner in the top-left of the screen,
its position would need to be (32, 32). This coordinate system is the same for all sprites, regardless of
their size. Figure: 5.1 shows how the coordinate system is arranged.

Example: Displaying a Sprite
In this example, we’ll just put a ball on the screen. First, the program needs to set up TinyVicky to be
in sprite mode with no border and a light purple background:

MMU_IO_CTRL = $0001 ; MMU I/O Control Register

VKY_MSTR_CTRL_0 = $D000 ; Vicky Master Control Register 0
VKY_MSTR_CTRL_1 = $D001 ; Vicky Master Control Register 1
VKY_BRDR_CTRL = $D004 ; Vicky Border Control Register
VKY_BKG_COL_B = $D00D ; Vicky Graphics Background Color Blue Component
VKY_BKG_COL_G = $D00E ; Vicky Graphics Background Color Green Component
VKY_BKG_COL_R = $D00F ; Vicky Graphics Background Color Red Component

VKY_SP0_CTRL = $D900 ; Sprite #0’s control register
VKY_SP0_AD_L = $D901 ; Sprite #0’s pixel data address register
VKY_SP0_AD_M = $D902
VKY_SP0_AD_H = $D903
VKY_SP0_POS_X_L = $D904 ; Sprite #0’s X position register
VKY_SP0_POS_X_H = $D905
VKY_SP0_POS_Y_L = $D906 ; Sprite #0’s Y position register
VKY_SP0_POS_Y_H = $D907

;
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Figure 5.1: Sprite Positions

; Set up TinyVicky to display sprites
;
lda #$24 ; Graphics and Sprite engines enabled
sta VKY_MSTR_CTRL_0
stz VKY_MSTR_CTRL_1 ; 320x240 @ 60Hz

stz VKY_BRDR_CTRL ; No border

lda #$96 ; Background: lavender
sta VKY_BKG_COL_R
lda #$7B
sta VKY_BKG_COL_G
lda #$B6
sta VKY_BKG_COL_B

Next, the program loads the sprite’s colors into the CLUT (ptr_src and ptr_dst are 16-bit storage
locations in zero page and are used as pointers):

;
; Load the sprite LUT into memory
;

lda #$01 ; Switch to I/O Page #1
sta MMU_IO_CTRL

lda #<balls_clut_start ; Set the source pointer to the palette data
sta ptr_src
lda #>balls_clut_start
sta ptr_src+1

lda #<VKY_GR_CLUT_0 ; Set the destination pointer to Graphics CLUT 1



sta ptr_dst
lda #>VKY_GR_CLUT_0
sta ptr_dst+1

ldx #0 ; X is a counter for the number of colors copied
color_loop: ldy #0 ; Y is a pointer to the component within a CLUT color
comp_loop: lda (ptr_src),y ; Read a byte from the code

sta (ptr_dst),y ; And write it to the CLUT
iny ; Move to the next byte
cpy #4
bne comp_loop ; Continue until we have copied 4 bytes

inx ; Move to the next color
cmp #16
beq done_lut ; Until we have copied all 16

clc ; Advance ptr_src to the next source color entry
lda ptr_src
adc #4
sta ptr_src
lda ptr_src+1
adc #0
sta ptr_src+1

clc ; Advance ptr_dst to the next destination color entry
lda ptr_dst
adc #4
sta ptr_dst
lda ptr_dst+1
adc #0
sta ptr_dst+1

bra color_loop ; And start copying that new color

done_lut: stz MMU_IO_CTRL ; Go back to I/O Page 0

Finally, we point sprite 0 to the pixel data (which is included in the assembly code below), set its
location on the screen (which will be the upper left corner of the screen), and then we turn on the
sprite setting its LUT and LAYER in the process:

;
; Set up sprite #0
;

init_sp0: lda #<balls_img_start ; Address = balls_img_start
sta VKY_SP0_AD_L
lda #>balls_img_start
sta VKY_SP0_AD_M
stz VKY_SP0_AD_H

lda #32
sta VKY_SP0_POS_X_L ; (x, y) = (32, 32)... should be upper-left corner of the screen
stz VKY_SP0_POS_X_H

lda #32
sta VKY_SP0_POS_Y_L
stz VKY_SP0_POS_Y_H

lda #$41 ; Size = 16x16, Layer = 0, LUT = 0, Enabled
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sta VKY_SP0_CTRL

Here is the pixel data for the sprite:

balls_img_start:
.byte $0, $0, $0, $0, $0, $0, $3, $2, $2, $1, $0, $0, $0, $0, $0, $0
.byte $0, $0, $0, $0, $5, $5, $4, $3, $3, $3, $3, $2, $0, $0, $0, $0
.byte $0, $0, $0, $7, $7, $7, $6, $5, $4, $4, $3, $3, $1, $0, $0, $0
.byte $0, $0, $7, $9, $A, $B, $A, $8, $6, $5, $4, $3, $2, $1, $0, $0
.byte $0, $5, $7, $A, $D, $E, $D, $A, $7, $5, $5, $4, $3, $1, $1, $0
.byte $0, $5, $7, $B, $E, $E, $E, $C, $7, $5, $5, $4, $3, $1, $1, $0
.byte $3, $4, $6, $A, $D, $E, $D, $A, $7, $5, $5, $4, $3, $2, $1, $1
.byte $2, $3, $5, $8, $A, $C, $A, $8, $6, $5, $5, $4, $3, $2, $1, $1
.byte $2, $3, $4, $6, $7, $7, $7, $6, $5, $5, $5, $4, $3, $1, $1, $1
.byte $1, $3, $4, $5, $5, $5, $5, $5, $5, $5, $5, $3, $3, $1, $1, $1
.byte $0, $3, $3, $4, $5, $5, $5, $5, $5, $5, $4, $3, $2, $1, $1, $0
.byte $0, $2, $3, $3, $4, $4, $4, $4, $4, $3, $3, $2, $1, $1, $1, $0
.byte $0, $0, $1, $2, $3, $3, $3, $3, $3, $3, $2, $1, $1, $1, $0, $0
.byte $0, $0, $0, $1, $1, $1, $2, $2, $1, $1, $1, $1, $1, $0, $0, $0
.byte $0, $0, $0, $0, $1, $1, $1, $1, $1, $1, $1, $1, $0, $0, $0, $0
.byte $0, $0, $0, $0, $0, $0, $1, $1, $1, $1, $0, $0, $0, $0, $0, $0

Here are the colors for the sprite (note that this example is using only 15 colors, to make the example
more understandable in print):

balls_clut_start:
.byte $00, $00, $00, $00
.byte $88, $00, $00, $00
.byte $7C, $18, $00, $00
.byte $9C, $20, $1C, $00
.byte $90, $38, $1C, $00
.byte $B0, $40, $38, $00
.byte $A8, $54, $38, $00
.byte $C0, $5C, $50, $00
.byte $BC, $70, $50, $00
.byte $D0, $74, $68, $00
.byte $CC, $88, $68, $00
.byte $E0, $8C, $7C, $00
.byte $DC, $9C, $7C, $00
.byte $EC, $A4, $90, $00
.byte $EC, $B4, $90, $00





6
Tiles

The third graphics engine TinyVicky provides is the tile map system. The tile map system might seem
a bit confusing at first, but really it is very similar to text mode, just made more flexible. In text mode,
we have characters (256 of them). The shapes of the characters are defined in the font. What character
is shown in a particular spot on the screen is set in the text matrix, which is a rectangular array of
bytes in memory. In the same way, with the tile system we have tiles (256 of those, too). What those
tiles look like are defined in a “tile set.” What tile is shown in a particular spot on the screen is set in
the “tile map.” So there is an analogy:

character ≈ tile
font ≈ tile set

text matrix ≈ tile map

There are several differences with tile maps, however:

• A tile map may use tiles that are either 8 × 8 pixels or 16 × 16 pixels.

• A tile map can be scrolled smoothly horizontally or vertically.

• A tile may use 256 colors in its pixels as opposed to text mode’s two-color characters. In particular,
this means that a tile set uses one byte per pixel, with that byte’s value being an index into a CLUT
(as with bitmaps and sprites), where text mode fonts are one bit per pixel choosing between a
foreground and background color.

• The tile map system allows for up to eight different tile sets to be used at the same time, where
text mode has a single font.

• Up to three different tile maps can be displayed at one time, where text mode can only display
one text matrix.

• A tile map can be placed on any one of three display layers, where text mode is always on top.

6.1 Tile Maps
There are three tile maps supported by TinyVicky, each of which has 13 bytes worth of registers (see
table: 6.1). Tile map 0 starts at 0xD200. Tile map 1 starts at 0xD20C. Tile map 2 starts at 0xD218.

TILE_SIZE if 0, tiles are 8 pixels wide by 8 tall. If 1, tiles are 16 pixels wide by 16 pixels tall

ENABLE if set, the tile map will be displayed (if GRAPH and TILES are set in TinyVicky’s Master Control
Register)
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Offset R/W 7 6 5 4 3 2 1 0
0 W — TILE_SIZE — ENABLE
1 W AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
2 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
3 W — AD17 AD16
4 W MAP_SIZE_X
5 W RESERVED
6 W MAP_SIZE_Y
7 W RESERVED
8 W X3 X2 X1 X0 SSX3 SSX2 SSX1 SSX0
9 W DIR_X — X9 X8 X7 X6 X5 X4

10 W Y3 Y2 Y1 Y0 SSY3 SSY2 SSY1 SSY0
12 W DIR_Y — Y7 Y6 Y5 Y4

Table 6.1: Tile Map Registers

AD the address of the tile map data in RAM

MAP_SIZE_X the width of the tile map in tiles (i.e. the number of columns)

MAP_SIZE_Y the height of the tile map in tiles (i.e. the number of rows)

X horizontal scroll in tile widths

SSX horizontal scroll in pixels. How these bits are used varies with the size. If tiles are 16 pixels wide,
then flags SSX[3..0] are used. If tiles are only 8 pixels wide, then only SSX[3..1] are used.

DIR_X the direction of the horizontal scroll.

Y vertical scroll in tile heights

SSY vertical scroll in pixels. How these bits are used varies with the size. If tiles are 16 pixels wide,
then flags SSY[3..0] are used. If tiles are only 8 pixels wide, then only SSY[3..1] are used.

DIR_Y the direction of the vertical scroll.

One way tile maps get their flexibility is that, where text mode uses 8-bit bytes for the text matrix,
a tile map is actually a rectangular collection of 16-bit integers in memory. A tile map entry is divided
up into two pieces: the first byte is the number of the tile to display in that position (much like the
character code in text mode), but the upper byte contains attribute bits (see table: 6.2), which have two
fields:

SET is the number of the tile set to use for this tile’s appearance

CLUT is the number of the graphics CLUT to use in setting the colors

This attribute system makes tiles very powerful. Effectively, a single tile map can display 1,024
completely unique shapes at one time by using all eight tile sets. Also, since the CLUT is set for each
tile in the attributes, the number of tiles needed can be reduced by clever use of recoloring.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
— CLUT SET TILE NUMBER

Table 6.2: A Tile Map Entry
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6.1.1 Scrolling
Tile maps can scroll across the screen both horizontally and vertically. The position of the tile map on
the screen is controlled through the registers at offsets 8, 9, and 10. The horizontal position is controlled
by DIR_X, X, and SSX. The vertical position is controlled by DIR_Y, Y, and SSY. The bits X and Y set the
position in units of tiles. That is, the number in X[9..0] specifies how many complete tile columns the
tile map is moved left or right. Likewise, Y[9..0] specifies how many tile rows the tile map is moved up
or down. The SSX and SSY bits are used to specify how many rows of pixels within a tile the tile map
is to move. SSX and SSY are therefore “smooth scroll” registers. They have a small trick to their use,
however:

If the tile map uses tiles 16 pixels on a side, SSX[3..0] is used to specify the number of pixels to shift
the tile map left or right: from 0 to 15. If, on the other hand, the tile map uses tiles 8 pixels on a side,
only SSX[3..1] are used to specify the number of pixels to move: from 0 to 7. Note that SSX[0] is not
used at all in this case. The SSY bits work in exactly the same way for smooth scrolling in the vertical
direction.

Finally, DIR_X and DIR_Y are used to control the direction of the scrolling. If DIR_X is 0, the tile map
will move to the left. If DIR_X is 1, the tile map will move to the right. If DIR_Y is 0, the tile map will
move to up. If DIR_Y is 1, the tile map will move down. Note that the representation of the amount of
the scrolling is separate from the direction (set X to 3 to scroll by 3 tiles, whether that is 3 to the left
or 3 to the right). One way to look at the scroll registers is that they are one’s complement numbers: a
magnitude and a separate sign bit.

To make sure that scrolling will work properly, the tile map needs to be at least as big as the full
screen (even if it is largely “empty”), and there should be blank columns to the left and the right and
blank rows above and below. That is, it is best to leave an empty margin all the way around your
working tile map.

6.2 Tile Sets
Essentially, a tile set is just a bitmap, but of a smaller size and arranged in a particular way. If the
smaller (8×8) tiles are used, the tile set image is 128 pixels wide by 128 pixels tall. If the larger (16×16)
tiles are used, the tile set image is 256 pixels wide by 256 pixels tall. The image is then divided up into
256 equal sizes squares; that is 16 squares by 16 squares. Each square area of the tile set image is the
image data for a particular tile. The tiles are arranged left-to-right and top-to-bottom. Tile 0 is in the
upper left of the image and tile 255 is in the lower right. Table 6.3 shows graphically how they are
arranged.

As with bitmaps and sprites, the pixels of the tiles are each an individual byte. The contents of the
byte (0 – 255) serving as an index into a color lookup table. The pixels are also laid out in left-to-right
and top-to-bottom order, just as with bitmaps and individual sprites.

TinyVicky supports eight separate tile sets. Each one has a single three byte address register, which
provides the address to the tile set pixel data, and a configuration register (see table: 6.4). To use them,
a program simply stores the address of the pixel data to use into the appropriate address register. The
configuration register contains a single SQUARE flag, which indicates the layout of the tile set image.
If SQUARE is set (1), the tile set image is square (128 × 128 pixels for 8 × 8 tiles or 256 × 256 pixels for
16 × 16 tiles). If SQUARE is clear (0), the tile set image is vertical (8 × 2, 048 pixels for 8 × 8 tiles, or
16 × 4, 096 pixels for 16 × 16 tiles).

Example: A Simple Tile Map
;
; Set up TinyVicky to display tiles
;
lda #$14 ; Graphics and Tile engines enabled
sta VKY_MSTR_CTRL_0
stz VKY_MSTR_CTRL_1 ; 320x240 @ 60Hz

lda #$40 ; Layer 0 = Bitmap 0, Layer 1 = Tile map 0



128 or 256 pixels
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or
25
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pi

xe
ls

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 46
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 60 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Table 6.3: Arrangement of Tiles in a Tile Set Image

sta VKY_LAYER_CTRL_0
lda #$15 ; Layer 2 = Tile Map 1
sta VKY_LAYER_CTRL_1

stz VKY_BRDR_CTRL ; No border

lda #$19 ; Background: midnight blue
sta VKY_BKG_COL_R
lda #$19
sta VKY_BKG_COL_G
lda #$70
sta VKY_BKG_COL_B

To define the tile set, all we really need to do is to set the address register for the tile set to point to
the actual pixel data. In this particular case, the code is just going to use tile set 0.

;
; Set tile set #0 to our image
;

lda #<tiles_img_start
sta VKY_TS0_ADDR_L
lda #>tiles_img_start
sta VKY_TS0_ADDR_M
lda #‘tiles_img_start
sta VKY_TS0_ADDR_H

Finally, the code sets up the tile map itself, setting the size of the tiles, the size of the tile map, setting
the position of the screen in the tile map, and pointing to the tile map data.

;
; Set tile map #0
;

lda #$01 ; 16x16 tiles, enable
sta VKY_TM0_CTRL
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Address R/W Tile Set 7 6 5 4 3 2 1 0
0xD280 W

0

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD281 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD282 W — AD17 AD16
0xD283 W — SQUARE —
0xD284 W

1

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD285 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD286 W — AD17 AD16
0xD287 W — SQUARE —
0xD288 W

2

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD289 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD28A W — AD17 AD16
0xD28B W — SQUARE —
0xD28C W

3

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD28D W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD28E W — AD17 AD16
0xD28F W — SQUARE —
0xD290 W

4

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD291 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD292 W — AD17 AD16
0xD293 W — SQUARE —
0xD294 W

5

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD295 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD296 W — AD17 AD16
0xD297 W — SQUARE —
0xD298 W

6

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD299 W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD29A W — AD17 AD16
0xD29B W — SQUARE —
0xD29C W

7

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
0xD29D W AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
0xD29E W — AD17 AD16
0xD29F W — SQUARE —

Table 6.4: Tile Set Registers

lda #22 ; Our tile map is 20x15
sta VKY_TM0_SIZE_X
lda #16
sta VKY_TM0_SIZE_Y

lda #<tile_map ; Point to the tile map
sta VKY_TM0_ADDR_L
lda #>tile_map
sta VKY_TM0_ADDR_M
lda #‘tile_map
sta VKY_TM0_ADDR_H

lda #$0F ; Set scrolling (15, 0)
sta VKY_TM0_POS_X_L
lda #$00
sta VKY_TM0_POS_X_H

stz VKY_TM0_POS_Y_L



stz VKY_TM0_POS_Y_H

The tile map itself. In this case, we just define it in-line. The data is formatted to match the dimen-
sions of the tile map for ease of reading. Note that the left-most and right-most columns are essentially
blank, providing some buffer space to allow for scrolling. Similarly, there is a spare row on the bottom.
This data is formatted as single hexadecimal digits, to make it easier to format this data on the page,
but the data is actually stored as 16-bit values. This is taking advantage of the fact that the code is using
CLUT 0 and LAYER 0 for the tiles and that there are no more than 16 tiles in the tile set.

tile_map:
.word $4,$1,$0,$1,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$4,$0,$4,$0
.word $0,$0,$1,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$4,$0,$0
.word $0,$1,$0,$1,$0,$0,$6,$7,$7,$7,$7,$7,$7,$7,$7,$8,$0,$0,$4,$0,$4,$0
.word $0,$0,$0,$0,$0,$0,$9,$1,$2,$3,$4,$5,$0,$0,$0,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$2,$1,$2,$3,$4,$5,$0,$0,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$3,$2,$1,$2,$3,$4,$5,$0,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$4,$3,$2,$1,$2,$3,$4,$5,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$5,$4,$3,$2,$1,$2,$3,$4,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$0,$5,$4,$3,$2,$1,$2,$3,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$0,$0,$5,$4,$3,$2,$1,$2,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$9,$0,$0,$0,$5,$4,$3,$2,$1,$A,$0,$0,$0,$0,$0,$0
.word $0,$0,$0,$0,$0,$0,$B,$C,$C,$C,$C,$C,$C,$C,$C,$D,$0,$0,$0,$0,$0,$0
.word $0,$3,$0,$3,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$2,$0,$2,$0
.word $0,$0,$3,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$2,$0,$0
.word $0,$3,$0,$3,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$2,$0,$2,$0
.word $0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$0,$2,$0,$0,$4



7
Miscellaneous Features of TinyVicky

7.1 DIP Switches
F256jr has eight DIP switches on the board, which can be used to configure various options. The DIP
switches are present on a single register (see table: 7.1). The DIP switches ground their signals when
placed in their “on” positions. So a true or asserted value is 0, while the false or de-asserted value is 1.

Address R/W 7 6 5 4 3 2 1 0
0xD670 R GAMMA USER2 USER1 USER0 BOOT

Table 7.1: DIP Switch Register

There are five fields of switches:

GAMMA this is a dedicated switch to indicate if gamma correction should be turned on (0) or not (1)

USER0, USER1, USER2 these three switches are reserved for use by the operating system or programs.
On is 0, off is 1.

BOOT these four switches provide information to the operating system for boot options.

7.2 The Border
The F256jr’s display can have a border, which overlays all the other display elements. The border can
have any color which TinyVicky can display, and can have a width from 0 to 31 pixels. The border can
also be turned off, leaving the full display for graphics or text.

When using graphics modes, the border simply hides the graphics elements underneath it. For text
mode, things are a little different. The text display will be shifted so that the character at (0, 0) is still
the upper-left character. The layout of the text and color matrixes do not change, however. Cells that
are under the right side or bottom of the border will still be in the matrixes but will not be displayed.
Another way to put it is that, if the text resolution is 80 characters wide, it will remain 80 characters
per line even if the border is on and only 76 characters are displayed.

ENABLE when set (1), the border will be displayed

SCROLL_X the number of pixels the border should be shifted in the horizontal direction

BBR the amount of blue in the border (0 = none, 255 = maximum amount)

BGR the amount of green in the border (0 = none, 255 = maximum amount)

BRR the amount of red in the border (0 = none, 255 = maximum amount)
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Address R/W Name 7 6 5 4 3 2 1 0
0xD004 R/W BRDR_CTRL — SCROLL_X — ENABLE
0xD005 R/W BRDR_BLUE Blue component of border color
0xD006 R/W BRDR_GREEN Green component of border color
0xD007 R/W BRDR_RED Red component of border color
0xD008 R/W BRDR_WIDTH — SIZE_X
0xD009 R/W BRDR_HEIGHT — SIZE_Y

Table 7.2: Border Registers

SIZE_X the width of the left and right sides of the border in pixels (from 0 to 31)

SIZE_X the height of top and bottom of the border in pixels (from 0 to 31)

7.3 Background Color
In text mode, the background color is determined by the color matrix and the text color LUTs. For
the graphics modes, however, a background color is specified separately. There are three registers to
specify the background color’s red, green, and blue components (see table: 7.3). This is the color that
will be displayed in graphics modes, if all the layers specify that a given pixel has the color 0 (which is
always the transparent pixel color).

Address R/W Name 7 6 5 4 3 2 1 0
0xD00D R/W BGND_BLUE Blue component of background color
0xD00E R/W BGND_GREEN Green component of background color
0xD00F R/W BGND_RED Red component of background color

Table 7.3: Background Color Registers

7.4 Line Interrupt and Beam Position
TinyVicky can trigger a SOL interrupt (see table: 9.1) when the display has reached a given raster line.
This can be useful for split-screen style effects or other programming tricks that work off of partition-
ing the screen into separate areas. To use this feature, a program would enable the line interrupt and
set a register to the number of the line on the screen when the interrupt should be triggered. In addi-
tion to setting a line interrupt, there are two 12-bit registers that allow the program to see what line
and column is TinyVicky is currently drawing. The addresses for all these registers overlap. The line
interrupt registers are write-only, and the current beam position registers are read only (see table: 7.4)

Address R/W Name 7 6 5 4 3 2 1 0
0xD018 W LINT_CTRL — ENABLE
0xD019 W LINT_L L7 L6 L5 L4 L3 L2 L1 L0
0xD01A W — L11 L10 L9 L8
0xD01B W — Reserved
0xD018 R RAST_COL X7 X6 X5 X4 X3 X2 X1 X0
0xD019 R — X11 X10 X9 X8
0xD01A R RAST_ROW Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
0xD01B R — Y11 Y10 Y9 Y8

Table 7.4: Line Interrupt and Beam Position Registers
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ENABLE if set (1), TinyVicky will trigger line interrupts (write only)

LINT_L the line number (12 bits) on which to trigger the next line interrupt (write only). The top of
the display is line 0, and the bottom of the screen is 400 for 320×200 mode, and 480 for 320×240
mode.

RAST_COL the number (12 bits) of the current pixel being drawn (read only)

RAST_ROW the number (12 bits) of the current line being drawn (read only)

Example: Changing Border with the Line
In this example, we will play with a split-screen style effect changing the color of the border so that
the top and bottom borders are blue while the left and right borders are red. To do this, we will use
the line interrupt twice for each frame: once when we are on the line just below the last line of the top
border, and once when we are on the first line of the bottom border.

To make this work, the example has a single state variable, which will track which color border
is being rendered. It will enable the line interrupt, and then set the line number to wait for. When that
interrupt comes in, it will check the state variable, setting the border color and new line number based
on state. It will also flip state to the other value (0 or 1).

INT_PEND_0 = $D660 ; Pending register for interrupts 0 - 7
INT_PEND_1 = $D661 ; Pending register for interrupts 8 - 15
INT_MASK_0 = $D666 ; Mask register for interrupts 0 - 7
INT_MASK_1 = $D667 ; Mask register for interrupts 8 - 15
INT01_VKY_SOL = $02

MMU_IO_CTRL = $0001 ; MMU I/O Control Register

VKY_MSTR_CTRL_0 = $D000 ; Vicky Master Control Register 0
VKY_MSTR_CTRL_1 = $D001 ; Vicky Master Control Register 1
VKY_BRDR_CTRL = $D004 ; Vicky Border Control Register
VKY_BRDR_COL_B = $D005 ; Vicky Border Color -- Blue
VKY_BRDR_COL_G = $D006 ; Vicky Border Color -- Green
VKY_BRDR_COL_R = $D007 ; Vicky Border Color -- Red
VKY_BRDR_VERT = $D008 ; Vicky Border vertical thickness in pixels
VKY_BRDR_HORI = $D009 ; Vicky Border Horizontal Thickness in pixels

VIRQ = $FFFE

LINE0 = 16 ; Start at line 16 (first line on the text display)
LINE1 = 480 - 16 ; End on line 464 (last line of text display)

;
; Variables
;
* = $0080

state .byte ? ; Variable to track which color we should use

;
; Code
;
* = $e000

start: ; Disable IRQ handling
sei



; Go back to I/O page 0
stz MMU_IO_CTRL

; Load my IRQ handler into the IRQ vector
; NOTE: this code just takes over IRQs completely. It could save
; the pointer to the old handler and chain to it when it had
; handled its interrupt. But what is proper really depends on
; what the program is trying to do.
lda #<my_handler
sta VIRQ
lda #>my_handler
sta VIRQ+1

; Mask off all but the SOL interrupt
lda #$ff
sta INT_MASK_1
and #~INT01_VKY_SOL
sta INT_MASK_0

; Clear all pending interrupts
lda #$ff
sta INT_PEND_0
sta INT_PEND_1

; Make sure we’re in text mode
lda #$01 ; enable TEXT
sta VKY_MSTR_CTRL_0 ; Save that to VICKY master control register 0
stz VKY_MSTR_CTRL_1

; Set the border
lda #$01 ; Enable the border
sta VKY_BRDR_CTRL

lda #16 ; Make it 16 pixels wide
sta VKY_BRDR_VERT
sta VKY_BRDR_HORI

lda #$80 ; Make it cyan to start with
sta VKY_BRDR_COL_B
sta VKY_BRDR_COL_G
stz VKY_BRDR_COL_R

lda #$01 ; Turn on the line interrupt
sta VKY_LINE_CTRL

lda #<LINE0 ; set the line to interrupt on
sta VKY_LINE_NBR_L
lda #>LINE0
sta VKY_LINE_NBR_H

stz state ; Start in state 0

; Re-enable IRQ handling
cli

loop: ; Just loop forever... a real program will do stuff here
nop
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bra loop

;
; A simple interrupt handler
;
my_handler: .proc

pha

; Save the system control register
lda MMU_IO_CTRL
pha

; Switch to I/O page 0
stz MMU_IO_CTRL

; Check for SOL flag
lda #INT01_VKY_SOL
bit INT_PEND_0
beq return ; If it’s zero, exit the handler

; Yes: clear the flag for SOL
sta INT_PEND_0

lda state ; Check the state
beq is_zero

stz state ; If state 1: Set the state to 0

lda #<LINE0 ; Set the line to interrupt on
sta VKY_LINE_NBR_L
lda #>LINE0
sta VKY_LINE_NBR_H

lda #$80 ; Make the border blue
sta VKY_BRDR_COL_B
stz VKY_BRDR_COL_G
stz VKY_BRDR_COL_R
bra return

is_zero: lda #$01 ; Set the state to 1
sta state

lda #<LINE1 ; set the line to interrupt on
sta VKY_LINE_NBR_L
lda #>LINE1
sta VKY_LINE_NBR_H

lda #$80 ; Make the border red
sta VKY_BRDR_COL_R
stz VKY_BRDR_COL_G
stz VKY_BRDR_COL_B

; Restore the system control register
return: pla

sta MMU_IO_CTRL

; Return to the original code



pla
rti
.pend

7.5 Gamma Correction
TinyVicky has the ability to apply gamma correction to the video signal. This allows users to adjust
their images to match their monitors. Activating gamma correction is done by setting the GAMMA flag
in the Vicky master control register (see table: 3.2). When enabled, colors will be adjusted through
the gamma look up tables. There are three tables: blue is at 0xC000, green is at 0xC400, and red is at
0xC800.

The way that the gamma look up tables work is very straight forward. When drawing a pixel, the
separate color components are used as indexes into their respective gamma LUTs, and the value in the
LUT is used as the new component value. For instance, if a pixel’s color is (𝑟, 𝑔, 𝑏), then the new color
is:

r_corrected = gamma_red[r]
g_corrected = gamma_green[g]
b_corrected = gamma_blue[b]

On power up, TinyVicky sets up a default gamma correction of 1.8, although software (either the
user’s program or the operating system) has to turn on gamma correction to use it.



8
Sound

The F256jr supports two different sound chips, although only one is built-in. The built-in sound chip is
the SN76489 (called the “PGS” here), which was used by many vintage machines including the TI99/4A,
the BBC Micro, the IBM PCjr, and the Tandy 1000. On the F256jr, the PSG is implemented as two stereo
PSGs in the FPGA. The other chip supported is the Commodore SID chip (6581 or 8580). The SID is
not installed by default, but the board comes with two sockets for SID chips. The F256jr supports the
original 6581, the lower voltage 8580, and the modern SID replacement projects.

8.1 CODEC
The F256jr (and indeed all the Foenix computers up to this point) makes use of a WM8776 CODEC
chip. You can think of the CODEC as the central switchboard for audio on the F256jr. The CODEC chip
has inputs for several different audio channels (both analog and digital), and each audio device on
the F256jr is routed to an input on the CODEC. The CODEC then has outputs for audio line level and
headphones. The CODEC will convert analog inputs to digital, mix all the audio inputs according to
its settings, and then convert the resulting digital audio to analog and drive the outputs. With the
CODEC, you can turn on and off the various input channels, control the volume, and mute or enable
the different outputs.

The CODEC is a rather complex chip with many features, and the full details are really beyond the
scope of this document. Most programs for the F256jr will not need to use it or will only use it in very
specific ways. Therefore, this document will really just show how to access it and initialize it and then
leave a reference to the data sheet for the chip that has the complete data on the chip.

Raw access to the CODEC chip is fairly complex. Fortunately, the FPGA on the F256jr provides three
registers to simply access for programs. The FPGA takes care of the actual timing of transmitting data
to the CODEC, serializing the data correctly, and so on. All the program needs to know about are the
correct format for the 16-bit command words that are sent to the CODEC, and then a status register to
monitor.

The CODEC commands are based around a number of registers. Each command is really just writing
values to those registers. The command words are 16-bits wide, with the 7 most significant bits being
the number of the register to write, and the 9 least significant bits being the data to write. For instance,
there is a register to enable and disable the headphone output. Bit 0 of the register controls whether
or not the headphone output is enabled (0 = enabled, 1 = disabled). The register number is 13. So, to
disable the output on the headphones, we would need to write 000000001 to register 13. The register
number in binary is 0001101, So the command word we would need to send is 0001101000000001\
or 0x1A01.

The registers for the CODEC on the F256jr are:
Bit 0 of the status/control register both triggers sending the command (on a write) and indicates if

the CODEC is busy receiving a command (writing a 1 triggers the sending of the command, reading a
1 indicates that the CODEC is busy).

So to mute the headphones, we would issue the following:

47



Address R/W 7 6 5 4 3 2 1 0 Purpose
0xD620 W D7 D6 D5 D4 D3 D2 D1 D0 Command Low
0xD621 W R6 R5 R4 R3 R2 R1 R0 D8 Command High
0xD622 R X BUSY Status
0xD622 W X START Control

Table 8.1: CODEC Control Registers

wait: lda $D622 ; Wait for the CODEC to be ready
and #$01

cmp #$01
beq wait ; Bit 0 = 1, CODEC is still busy... keep waiting

lda #$01 ; Set command to %0001101000000001, or R13 <- 000000001
sta $D620
lda #$1A
sta $D621

lda #$01 ; Trigger the transmission of the command to the CODEC
sta $D622

8.2 Using the PSGs
The F256jr has support for dual SN76489 (PSG) sound chips, emulated in the FPGA. The SN76489 was
used in several vintage machines, including the TI-99/4A, BBC Micro, IBM PCjr, and Tandy 1000. The
chip provides three independent square-wave tone generators and a single noise generator. Each tone
generator can produce tones of several frequencies in 16 different volume levels. The noise generator
can produce two different types of noise in three different tones at 16 different volume levels.

Access to each PSG is through a single memory address, but that single address allows the CPU to
write a value to eight different internal registers. For each tone generator, there is a ten bit frequency
(which takes two bytes to set), and a four bit “attenuation” or volume level. For the noise generator,
there is a noise control register and a noise attenuation register.

R2 R1 R0 Channel Purpose
0 0 0 Tone 1 Frequency
0 0 1 Tone 1 Attenuation
0 1 0 Tone 2 Frequency
0 1 1 Tone 2 Attenuation
1 0 0 Tone 3 Frequency
1 0 1 Tone 3 Attenuation
1 1 0 Noise Control
1 1 1 Noise Attenuation

Table 8.2: SN76489 Channel Registers

There are four basic formats of bytes that can be written to the port:
Note: there is a PSG sound device for the left stereo channel and one for the right. The left channel

PSG can be accessed at 0xD600, and the right channel at 0xD610. Both are in I/O page 0.

8.2.1 Attenuation
All the channels support attenuation or volume control. The PSG expresses the loudness of the sound
with how much it is attenuated or dampened. Therefore, an attenuation of 0 will be the loudest sound,
while an attenuation of 15 will make the channel silent.
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D7 D6 D5 D4 D3 D2 D1 D0 Purpose
1 R2 R1 R0 F3 F2 F1 F0 Set the low four bits of the frequency
0 X F9 F8 F7 F6 F5 F4 Set the high seven bits of the frequency
1 1 1 0 X FB F1 F0 Set the type and frequency of the noise generator
1 R2 R1 R0 A3 A2 A1 A0 Set the attenuation (four bits)

Table 8.3: SN76489 Command Formats

8.2.2 Tones
Each of the three sound channels generates simple square waves. The frequency generated depends
upon the system clock driving the chip and the number provided in the frequency register. The rela-
tionship is:

𝑓 =
𝐶

32𝑛
where 𝑓 is the frequency produced, 𝐶 is the system clock, and 𝑛 is the number provided in the register.
Expressed a different way, the value we need to produce a given frequency can be computed as:

𝑛 =
𝐶

32 𝑓

For the F256jr the system clock is 3.57 MHz, which means:

𝑛 =
111, 563

𝑓

So, let us say we want channel 1 to produce a concert A, which is 440Hz at maximum volume. The
value we need to set for the frequency code is 111, 320/440 = 253 or 0xFE. We can do that with this
code:

lda #$90 ; %10010000 = Channel 1 attenuation = 0
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG

lda #$8E ; %10001100 = Set the low 4 bits of the frequency code
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG

lda #$0F ; %00001111 = Set the high 7 bits of the frequency
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG

To turn it off later, we just need to write:

lda #$9F ; %10011111 = Channel 1 attenuation = 15 (silence)
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG

8.2.3 Noise
Noise works differently from tones, since it is random. The noise generator on the PSG can produce
two styles of noise determined by the FB bit: white noise (FB = 1), and periodic (FB = 0). The noise has
a sort of frequency, based on either the system clock or the current output of tone 3. This frequency is
set using the F1 and F0 bits:

As an example, to set white noise of the highest frequency (𝐶/512 or around 6 kHz), we could use
the code:



F1 F0 Frequency
0 0 𝐶/512
0 1 𝐶/1024
1 0 𝐶/2048
1 1 Tone 3 output

Table 8.4: SN76489 Noise Frequencies

lda #$F0 ; %10010000 = Channel 3 attenuation = 0
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG

lda #$E4 ; %11100100 = white noise, f = C/512
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG

To turn it off later, we just need to write:

lda #$FF ; %1ff11111 = Channel 3 attenuation = 15 (silence)
sta $D600 ; Send it to left PSG
sta $D610 ; Send it to right PSG

8.3 Using the SIDs
The SID is a full-featured analog sound synthesizer, and a full explanation of how to use it is really
beyond the scope of this document. In this document, I will provide just an introduction to the chip
and list the register addresses for the SID chips that can be installed on the F256jr (see table 8.5).

The SID chip provides three independent voices (so it can play three notes at once). The three voices
are almost identical in their features, with voice 3 being the only one different. Each voice can produce
one of four basic sound wave forms: randomized noise, square waves, saw tooth waves, and triangle
waves. These waves can be generated over a range of frequencies, and for the square waves, the width
of the pulse (i.e. duty cycle) may be adjusted.

The type of wave form produced by a voice is controlled by the NOISE, PULSE, SAW, and TRI bits. If
NOISE is set to 1, the output is random noise. If PULSE is set, a square wave is produced. If SAW is set,
a saw tooth wave is produced. If TRI is set, the voice produces a triangle wave. If PULSE is set, the duty
cycle of the square wave (or pulse width, if you prefer) is set by the PW bits according to the formula
PW/40.95 (expressed as a percent).

The frequency of the waveform is set by the bits F[15..0]. This number sets the actual frequency
according the the formula:

𝑓out =
𝐹𝐶

16777216
where: 𝑓out is the output frequency, 𝐹 is the number set in the registers, and 𝐶 is the system clock
driving the SIDs. For the F256jr, 𝐶 is 1.022714 MHz, so the formula for the F256jr is:

𝑓out =
𝐹

16.405
or:

𝐹 = 16.404 𝑓out

For example: concert A, which is 440 Hz, would be: 𝐹 = 16.405 × 440 ≈ 7218. So, to play a concert A,
you would set the frequency to 7218, or 0x1C32.

Each of the three voices has a sound “envelope” which changes the volume of the sound during the
duration of the note. There are four phases to the sound envelope: attack, decay, sustain, and release
(ADSR). When the note first starts playing (that is, the GATE bit for the voice is set to 1), it starts at the
attack phase when the volume starts at zero and goes up to the current maximum volume. How fast
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Voice Offset R/W 7 6 5 4 3 2 1 0

V1

0 W F7 F6 F5 F4 F3 F2 F1 F0
1 W F15 F14 F13 F12 F11 F10 F9 F8
2 W PW7 PW6 PW5 PW4 PW3 PW2 PW1 PW0
3 W X PW11 PW10 PW9 PW8
4 W NOISE PULSE SAW TRI TEST RING SYNC GATE
5 W ATK3 ATK2 ATK1 ATK0 DLY3 DLY2 DLY1 DLY0
6 W STN3 STN2 STN1 STN0 RLS3 RLS2 RLS1 RLS0

V2

7 W F7 F6 F5 F4 F3 F2 F1 F0
8 W F15 F14 F13 F12 F11 F10 F9 F8
9 W PW7 PW6 PW5 PW4 PW3 PW2 PW1 PW0

10 W X PW11 PW10 PW9 PW8
11 W NOISE PULSE SAW TRI TEST RING SYNC GATE
12 W ATK3 ATK2 ATK1 ATK0 DLY3 DLY2 DLY1 DLY0
13 W STN3 STN2 STN1 STN0 RLS3 RLS2 RLS1 RLS0

V3

14 W F7 F6 F5 F4 F3 F2 F1 F0
15 W F15 F14 F13 F12 F11 F10 F9 F8
16 W PW7 PW6 PW5 PW4 PW3 PW2 PW1 PW0
17 W X PW11 PW10 PW9 PW8
18 W NOISE PULSE SAW TRI TEST RING SYNC GATE
19 W ATK3 ATK2 ATK1 ATK0 DLY3 DLY2 DLY1 DLY0
20 W STN3 STN2 STN1 STN0 RLS3 RLS2 RLS1 RLS0

21 W X FC2 FC1 FC0
22 W FC10 FC9 FC8 FC7 FC6 FC5 FC4 FC3
23 W RES3 RES2 RES1 RES0 EXT FILTV3 FILTV2 FILTV1
24 W MUTEV3 HIGH BAND LOW VOL3 VOL2 VOL1 VOL0

Table 8.5: SID Registers

this happens is determined by the attack rate (ATK3-0 in the registers). Once the volume reaches the
maximum, the volume goes down again to the sustain volume. This phase is called decay, and the speed
at which the volume drops is determined by the DCY3-0 register values. Next, the envelope enters the
sustain phase, where the volume is held steady at the sustain level (STN3-0). It stays here until the
note is to stop playing (GATE is set to 0). At this point, the envelope enters the release stage, where the
volume drops back to zero at the release rate (RLS3-0).

The ADSR envelope allows the SID chip to mimic the qualities of various musical instruments or
shape various sound effects. For instance, a pipe organ’s notes are typically either on or off, so the
attack, decay, and release rates would be set to be instantaneous, and the sustain level would be set to
full. A piano, on the other hand tends to have a sharp, somewhat percussive sound at the beginning
with the note holding a long time on release if not dampened.

While the different voices are independent, they can be set to alter one another through two dif-
ferent effects: synchronization, and ring modulation. With these features, the voices can interact with
each other in the following pairs:

• Voice 1 → Voice 2

• Voice 2 → Voice 3

• Voice 3 → Voice 1

8.3.1 Ring Modulation
If a voice’s RING bit is set and the voice is set to use the triangle wave form (TRI is set), then the triangle
wave will be replaced by the combination of the two voice’s frequencies. So if the RING bit of voice 1



is set, the result will be the ring modulation of voice 1 and voice 3. Ring modulation tends to produce
harmonics and overtones and can be used for bell like sounds.

8.3.2 Synchronization
If a voice’s SYNC bit is set, the frequency it produces will be synchronized to the controlling voice. So
if voice 1’s SYNC bit is set, its frequency will be synchronized to voice 3.



9
Interrupt Controller

The 65C02 has two interrupts: non-maskable interrupts (NMI) for high priority events, and the reg-
ular interrupt request line (IRQ) for normal priority events. Currently, the C256 series of computers
do not use NMI for any purpose, so the only interrupt is the IRQ line. There are many devices on the
F256jr which can trigger interrupts, so to save the interrupt handler the chore of querying each de-
vice in turn, the F256jr provides an interrupt controller module. The individual devices route their
interrupt request signals to the interrupt controller. When an interrupt comes in, the controller knows
which device it is and decides whether to forward the interrupt to the CPU. The interrupt handler can
then query the interrupt handler to see which device or devices have interrupts pending and can then
acknowledge them once they have been properly handled.

The interrupt controller provides two sets of registers to provide its functionality: interrupt masks,
and interrupt pending. The mask registers provide a mask flag for every possible interrupt. If the flag
is true (1), the interrupt from that device is masked, and an interrupt coming in from it will not trigger
an IRQ on the processor. The pending register provides a pending flag for every possible interrupt. If
the flag is true (1) on a read, the device has requested an interrupt, if false (0) there is no interrupt
pending from the device. Setting a flag in a pending register to 1 will acknowledge the interrupt and
cause the controller to drop the pending flag. Writing a 0 to a flag will have no effect.

NOTE: Some devices on the F256jr have their own interrupt enable flags (separate from the mask
flags). For example, the 65C22 VIA has an interrupt enable bit in one of its registers and will not send
an interrupt to the F256jr’s interrupt controller if that bit is not enabled. For such devices, the interrupt
enable flag on the device must be set and the corresponding mask bit in the interrupt controller must
be clear in order for interrupts to be sent to the CPU. Other devices, like VICKY, do not have a separate
enable flag. In their case, only their corresponding mask bits must be cleared to enable their interrupts.

As an example of working with the interrupt controller, let’s try using the SOF interrupt to alter the
character in the upper left corner.

To start, we will need to install our interrupt handler to respond to IRQs. For this example, we’re
going to completely take over interrupt processing, so we’ll do some things we wouldn’t ordinarily do.
Also, since an interrupt could come in while we’re setting things, up, we need to be careful about how
we do things.

1. First, we want to disable IRQs at the CPU level.

2. Then we set the interrupt vector.

3. Next, we want to mask off all but the SOF interrupt, since that is the only one we will process (in
real programs, we will either need to handle several interrupts or play nicely with the operating
system).

4. Now, there might be interrupts that came in earlier, so we will just clear all the pending interrupt
flags to ensure the program starts cleanly.

5. Finally, we enable CPU interrupt handling again and loop forever... processing the SOF interrupt
when it comes in.

53



Mask Pending Bit Name Purpose

0xD666 0xD660

0x01 INT_VKY_SOF TinyVicky Start Of Frame interrupt 1

0x02 INT_VKY_SOL TinyVicky Start Of Line interrupt 2

0x04 INT_PS2_KBD PS/2 keyboard event
0x08 INT_PS2_MOUSE PS/2 mouse event
0x10 INT_TIMER_0 TIMER0 has reached its target value
0x20 INT_TIMER_1 TIMER1 has reached its target value
0x40 INT_DMA DMA has completed
0x80 RESERVED

0xD667 0xD661

0x01 INT_UART The UART is ready to receive or send data
0x02 RESERVED
0x04 RESERVED
0x08 RESERVED
0x10 INT_RTC Event from the real time clock chip
0x20 INT_VIA Event from the 65C22 VIA chip
0x40 INT_IEC Event from the IEC serial bus
0x80 INT_SDC_INS User has inserted an SD card

Table 9.1: Interrupts

VIRQ = $FFFE

INT_PEND_0 = $D660 ; Pending register for interrupts 0 - 7
INT_PEND_1 = $D661 ; Pending register for interrupts 8 - 15
INT_MASK_0 = $D666 ; Mask register for interrupts 0 - 7
INT_MASK_1 = $D667 ; Mask register for interrupts 8 - 15

start: ; Disable IRQ handling
sei

; Load my IRQ handler into the IRQ vector
; NOTE: this code just takes over IRQs completely. It could save
; the pointer to the old handler and chain to it when it had
; handled its interrupt. But what is proper really depends on
; what the program is trying to do.
lda #<my_handler
sta VIRQ
lda #>my_handler
sta VIRQ+1

; Mask off all but the SOF interrupt
lda #$ff
sta INT_MASK_1
and #~INT00_VKY_SOF
sta INT_MASK_0

; Clear all pending interrupts
lda #$ff
sta INT_PEND_0
sta INT_PEND_1

; Put a character in the upper right of the screen
lda #SYS_CTRL_TEXT_PG
sta SYS_CTRL_1



CHAPTER 9. INTERRUPT CONTROLLER 55

lda #’@’
sta $c000

; Set the color of the character
lda #SYS_CTRL_COLOR_PG
sta SYS_CTRL_1

lda #$F0
sta $c000

; Go back to I/O page 0
stz SYS_CTRL_1

; Make sure we’re in text mode
lda #$01 ; enable TEXT
sta $D000 ; Save that to VICKY master control register 0
stz $D001

; Re-enable IRQ handling
cli

To actually process the interrupt, we need to read and then increment the character at the start
of the screen, clear the pending flag for the SOF interrupt, and then return. However, the screen and
the interrupt control registers are in different I/O banks, so we’ll need to change the I/O bank a couple
of times during interrupt processing. So, the first thing we will do is to save the value of the system
control register at 0x0001, so we can restore it before we return from the interrupt.

SYS_CTRL_1 = $0001
SYS_CTRL_TEXT_PG = $02

my_handler: pha

; Save the system control register
lda SYS_CTRL_1
pha

; Switch to I/O page 0
stz SYS_CTRL_1

; Check for SOF flag
lda #INT00_VKY_SOF
bit INT_PEND_0
beq return ; If it’s zero, exit the handler

; Yes: clear the flag for SOF
sta INT_PEND_0

; Move to the text screen page
lda #SYS_CTRL_TEXT_PG
sta SYS_CTRL_1

; Increment the character at position 0
inc $c000

; Restore the system control register
return: pla

sta SYS_CTRL_1



; Return to the original code
pla
rti



10
Tracking Time

10.1 Interval Timers
The F256jr provides two 24-bit timers. The two timers work on different clocks: timer 0 works off
the CPU clock (6.29 MHz), while timer 1 works off the start-of-frame timing (either 60 Hz or 70 Hz,
depending on the resolution). The timers have a few features in how they time things:

• they can count up from 0 or down from a starting value

• they can be set to trigger an interrupt on a comparison value

• they can either reload a start value or reset the value to 0 on reaching the target value

Address R/W Name 7 6 5 4 3 2 1 0
D650 W T0_CTR INT_EN — UP CLR LD EN
D650 R T0_STAT — EQ
D651 R/W

T0_VAL
V7 V6 V5 V4 V3 V2 V1 V0

D652 R/W V15 V14 V13 V12 V11 V10 V9 V8
D653 R/W V23 V22 V21 V20 V19 V18 V7 V6
D654 R/W T0_CMP_CTR — RELD RECLR
D655 R/W

T0_CMP
C7 C6 C5 C4 C3 C2 C1 C0

D656 R/W C15 C14 C13 C12 C11 C10 C9 C8
D657 R/W C23 C22 C21 C20 C19 C18 C17 C16
D658 W T1_CTR INT_EN — UP CLR LD EN
D658 R T1_STAT — EQ
D659 R/W

T1_VAL
V7 V6 V5 V4 V3 V2 V1 V0

D65A R/W V15 V14 V13 V12 V11 V10 V9 V8
D65B R/W V23 V22 V21 V20 V19 V18 V7 V6
D65C R/W T1_CMP_CTR — RELD RECLR
D65D R/W

T1_CMP
C7 C6 C5 C4 C3 C2 C1 C0

D65E R/W C15 C14 C13 C12 C11 C10 C9 C8
D65F R/W C23 C22 C21 C20 C19 C18 C17 C16

Table 10.1: Timer Registers

There are five registers for each timer:

CTR the master control register for the timer. There are five flags:

INT_EN if set, the timer will trigger an interrupt on reaching the target value
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UP if set, the timer will count up. If clear, it will count down.
CLR if set, the timer will reset to 0
LD if set, the timer will be set to the last value written to VAL
EN if set, the timer will count clock ticks

STAT this register (read on the same address as CTR) has just one flag EQ, which indicates if the timer
has reached the target value

VAL when read, gives the current value of the timer. When written, sets the value to use when loading
the timer.

CMP_CTR this register contains two flags to control what happens when the target value is reached.
When RECLR is set, the timer will return to 0 on reaching the target value. When RELD is set, the
timer will be set to the last value written to VAL.

CMP this register contains the target value for comparison

10.2 Real Time Clock
For programs needing to keep track of time, F256jr provides a real time clock chip (RTC), the bq4802.
This chip, keeps track of the year (including century), month, day, hour (in 12 or 24 hour mode), minute,
and second. The coin cell battery on the F256jr motherboard is to provide power to the RTC so it can
continue tracking time even when the F256jr is turned off or unplugged. Additionally, the RTC can send
interrupts to the CPU, either periodically or at a specific time.

The RTC is relatively straightforward to use, but one potentially tricky thing to keep in mind is that
there is a specific procedure to follow when reading or writing the date-time. As well as the registers
the CPU can access, the RTC has internal registers which are constantly updating as time progresses.
Normally, the internal registers update their external counterparts, but this should not be allowed to
happen while the CPU is getting or setting the externally facing registers. So, to access the external
registers, the program must first disable the automatic updates to the external registers. Then it can
read or write the external registers. Then it can re-enable the automatic updates. If the program has
changed the registers, when updates are re-enabled the data in the external registers will be sent to
the internal registers in one action. This keeps the time information consistent.

Address R/W Name 7 6 5 4 3 2 1 0
0xD690 R/W Seconds 0 second 10s digit second 1s digit
0xD691 R/W Seconds Alarm 0 second 10s digit second 1s digit
0xD692 R/W Minutes 0 minute 10s digit minute 1s digit
0xD693 R/W Minutes Alarm 0 minute 10s digit minute 1s digit
0xD694 R/W Hours AM/PM 0 hour 10s digit hour 1s digit
0xD695 R/W Hours Alarm AM/PM 0 hour 10s digit hour 1s digit
0xD696 R/W Days 0 0 day 10s digit day 1s digit
0xD697 R/W Days Alarm 0 0 day 10s digit day 1s digit
0xD698 R/W Day of Week 0 0 0 0 0 day of week digit
0xD699 R/W Month 0 0 0 month 10s digit month 1s digit
0xD69A R/W Year year 10s digit year 1s digit
0xD69B R/W Rates 0 WD RS
0xD69C R/W Enables 0 0 0 0 AIE PIE PWRIE ABE
0xD69D R/W Flags 0 0 0 0 AF PF PWRF BVF
0xD69E R/W Control 0 0 0 0 UTI STOP 12/24 DSE
0xD69F R/W Century century 10s digit century 1s digit

Table 10.2: MMU Registers

There are 16 registers for the RTC (see table 10.2). There is a register each for century, year, month,
day of the week (i.e. Sunday - Saturday), day, hour, minute, and second. Each one is expressed in
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binary-coded-decimal, meaning the lower four bits are the ones digit (0 - 9), and the upper bits are
the 10s digit. In most cases, the upper digit is limited (e.g. seconds and minutes can only have 0 - 6 as
the tens digit). For seconds, minutes, hours, and day there is a separate alarm register, which will be
described later. Finally, there are the four registers for rates, enabled, flags, and control:

The Enables register has four separate enable bits:

AIE if set (1), the alarm interrupt will be enabled. The RTC will raise an interrupt when the current
time matches the time specified in the alarm registers.

PIE if set (1), the RTC will raise an interrupt periodically, where the period is specified by the RS field.

PWRIE if set (1), the RTC will raise an interrupt on a power failure (not relevant to the F256jr).

ABE if set (1), the RTC will allow alarm interrupts when on battery backup (not relevant to the F256jr).

The Flags register has four separate flags, which generally reflect why an interrupt was raised:

AF if set (1), the alarm was triggered

PF if set (1), the periodic interrupt was triggered

PWRF if set (1), the power failure interrupt was triggered

BVF if set (1), the battery voltage is within safe range. If clear (0), the battery voltage is low, and the
time may be invalid.

The Control register has four bits which change how the RTC operates:

UTI if set (1), the update of the externally facing registers by the internal timers is inhibited. In order
to read or write those registers, the program must first set UTI and then clear it when done.

STOP this bit allows for a battery saving feature. If it is clear (0) before the system is powered down,
it will avoid draining the battery and may stop tracking the time. If it is set (1), it will keep using
the battery as long as possible.

12/24 sets whether the RTC is using 12 or 24 hour accounting.

DSE if set (1), daylight savings is in effect.

The Rates register controls the watchdog timer and the periodic interrupt. The watchdog timer is
not really relevant to the F256jr, but it monitors for activity and raises an interrupt if activity has not
been seen within a certain amount of time (specified by the WD field). The periodic interrupt will be
raised repeatedly, the period of which is set by the RS field (see table 10.3).

Example: Display the Time
In this example, we will read the time from the real time clock chip and print it out to the screen
in hh:mm:ss format. To make things a little different, the code will also use the OpenKernal calls to
initialize the text screen and print text. OpenKernel is a clean-room implementation of the Commodore
Kernel calls. The basic procedure is fairly simple: first the code disables the update of the transfer
registers, then the code reads the hours and prints them, then the code reads the minutes and prints
them, then the code fetches the seconds and prints them. Finally, the code re-enables the update of the
transfer registers by dropping the UTI flag.

NOTE: This code resets the MMU I/O page to 0 before it tries to read from the clock chip. This is just
to allow for the possibility of the kernel routines changing the I/O page without restoring it to 0.

ok_cint = $FF81 ; OpenKernal call to initialize the screen
ok_cout = $FFD2 ; OpenKernal call to print the character code in A

RTC_SECS = $D690 ; RTC Seconds register
RTC_MINS = $D692 ; RTC Minutes register
RTC_HOURS = $D694 ; RTC Hours register



RS3 RS2 RS1 RS0 Period
0 0 0 0 None
0 0 0 1 30.5175 𝜇s
0 0 1 0 61.035 𝜇s
0 0 1 1 122.070 𝜇s
0 1 0 0 244.141 𝜇s
0 1 0 1 488.281 𝜇s
0 1 1 0 976.5625 𝜇s
0 1 1 1 1.95315 ms
1 0 0 0 3.90625 ms
1 0 0 1 7.8125 ms
1 0 1 0 15.625 ms
1 0 1 1 31.25 ms
1 1 0 0 62.5 ms
1 1 0 1 125 ms
1 1 1 0 250 ms
1 1 1 1 500 ms

Table 10.3: RTC Periodic Interrupt Rates

RTC_CTRL = $D96E ; RTC Control register
RTC_24HR = $02 ; 12/24 hour flag (1 = 24 Hr, 0 = 12 Hr)
RTC_STOP = $04 ; 0 = STOP when power off, 1 = run from battery when power off
RTC_UTI = $08 ; Update Transfer Inhibit

start: jsr ok_cint ; Initialize the text screen

stz MMU_IO_CTRL ; Make sure we’re on I/O page 0

lda RTC_CTRL ; Stop the update of the RTC registers
ora #RTC_UTI | RTC_24HR
sta RTC_CTRL

stz MMU_IO_CTRL ; Make sure we’re on I/O page 0

lda RTC_HOURS ; Print the hours
jsr putbcd

lda #’:’
jsr ok_cout

stz MMU_IO_CTRL ; Make sure we’re on I/O page 0

lda RTC_MINS ; Print the minutes
jsr putbcd

lda #’:’
jsr ok_cout

stz MMU_IO_CTRL ; Make sure we’re on I/O page 0

lda RTC_SECS ; Print the seconds
jsr putbcd

stz MMU_IO_CTRL ; Make sure we’re on I/O page 0
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lda RTC_CTRL ; Reenable the update of the registers
and #~RTC_UTI
sta RTC_CTRL

Since the time registers of the clock chip are encoded in binary-coded-decimal, printing is relatively
straightforward, and is handled by a simple putbcd subroutine:

;
; Print a BCD number to the screen
;
putbcd: pha ; Save the number

and #$F0 ; Isolate the upper digit
lsr a
lsr a
lsr a
lsr a

clc ; Convert to ASCII
adc #’0’
jsr ok_cout ; And print

pla ; Get the full number back
and #$0F ; Isolate the lower digit

clc ; Convert to ASCII
adc #’0’
jsr ok_cout ; And print

rts





11
Versatile Interface Adapter

The F256jr includes a Western Design Center WDC65C22 versatile interface adapter or VIA. The VIA
provides several useful features for I/O and timing:

• Two independent I/O ports of eight parallel bits (PA, and PB).

• Four handshake control lines (CA1, CA2, CB1, and CB2)

• Programmable serial register for serial I/O operations

• Two independent timer counters

On the F256jr, the VIA is connected to header which is compatible with the keyboard header on the
Commodore VIC-20 and C-64. This means that a Commodore compatible keyboard could be connected
to the F256jr and used for keyboard input with appropriate programming. The VIA also provides access
to the two Atari-style joystick ports. The pins could also be used for general purpose I/O, although the
voltage levels are for 3 volt logic instead of the 5 volt logic used in older 8-bit machines.

A complete description of the VIA would be rather long, so this guide will merely list out the register
addresses and provide a quick break-down on the register functions. For a complete description, please
see the data sheet from Western Design Center.

Address R/W Name 7 6 5 4 3 2 1 0
0xDC00 R/W IORB PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0
0xDC01 R/W IORA PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0
0xDC02 R/W DDRB DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0
0xDC03 R/W DDRA DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0
0xDC04 R/W T1C_L T1C7 T1C6 T1C5 T1C4 T1C3 T1C2 T1C1 T1C0
0xDC05 R/W T1C_H T1C15 T1C14 T1C13 T1C12 T1C11 T1C10 T1C9 T1C8
0xDC06 R/W T1L_L T1L7 T1L6 T1L5 T1L4 T1L3 T1L2 T1L1 T1L0
0xDC07 R/W T1L_H T1L15 T1L14 T1L13 T1L12 T1L11 T1L10 T1L9 T1L8
0xDC08 R/W T2C_L T2C7 T2C6 T2C5 T2C4 T2C3 T2C2 T2C1 T2C0
0xDC09 R/W T2C_H T2C15 T2C14 T2C13 T2C12 T2C11 T2C10 T2C9 T2C8
0xDC0A R/W SR SR7 SR6 SR5 SR4 SR3 SR2 SR1 SR0
0xDC0B R/W ACR T1_CTRL T2_CTRL SR_CTRL PBL_EN PAL_EN
0xDC0C R/W PCR CB2_CTRL CB1_CTRL CA2_CTRL CA1_CTRL
0xDC0D R/W IFR IRQF T1F T2F CB1F CB2F SRF CA1F CA2F
0xDC0E R/W IER SET T1E T2E CB1E CB2E SRE CA1E CA2E
0xDC0F R/W IOPA2 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

Table 11.1: VIA Registers

63



IORA Input/Output Register for Port A. The eight bits correspond to the eight pins on port A.

DDRA Data Direction Register for Port A. Each bit configures the corresponding pin to be input (0) or
output (1).

IORB Input/Output Register for Port B. The eight bits correspond to the eight pins on port B.

DDRB Data Direction Register for Port B. Each bit configures the corresponding pin to be input (0) or
output (1).

T1C Timer 1 counter value

T1L Timer 1 latch

T2C Timer 2 counter value

SR is the shift register. Serial input may be read here, or data may be written here to be shifted out.

ACR Auxiliary Control Register. Contains fields to control the function of timer 1, timer 2, the shift
register, and how Port A and Port B latch data.

PCR Peripheral Control Register. Contains fields to control how the CA1, CA2, CB1, and CB2 handshake
pins are used.

IFR Interrupt Flag Register. Contains flags indicating which condition triggered an interrupt request.
Possible conditions are timer 1, timer 2, CB1, CB2, CA1, CA2, and shift register complete.

IER Interrupt Enable Register. Contains flags to enable or disable interrupts based on the different
possible conditions.

IOPA2 Same as IOPA except that the built-in handshaking capability is not used.

11.1 Joystick Support
The F256jr has two IDC headers that can be connected to a DB-9 socket to allow Atari style joysticks to be
used (see figure: 11.1 for the pinouts). Joystick header 0 is wired to the pins of Port B, and joystick header
1 is connected to Port A. The various joystick switches are connected to the ports in same manner as
on the C-64, with the exception that more buttons are supported (see table: 11.2).

UP3.3V

DOWN

LEFT

RIGHTBTN0

BTN1 BTN2

GND

1

2

9

10

Figure 11.1: Joystick Port Pinouts

In order to use the joysticks, the DDR bits for the ports must be set to 0 for input. Then the in-
put/output register for the port may be read. If a button or switch is closed on the joystick, the corre-
sponding bit in the I/O register will be clear (0). If the button is not pressed, the bit will be set (1).

As a reminder: be aware that the WDC65C22 on the F256jr is being used with a 3 volt supply. This
means that any device plugged into the joystick ports should be 3 volt tolerant and should not raise
any pin above 3 volts. Otherwise damage could occur.
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7 6 5 4 3 2 1 0
— BUTTON2 BUTTON1 BUTTON0 RIGHT LEFT DOWN UP

Table 11.2: Joystick Flags

Example: Displaying Joystick 1
In this example, we will poll joystick 1 and print out the state of all the buttons by printing the byte
we read from the joystick port as a simple binary number. The example will try to be a little bit smart
by only printing the value when the value has changed. NOTE: this example expects OpenKernal to be
installed, and will call two of its routines for initializing the screen and printing a character.

First, we initialize the screen, the variable we use to track the old value of the joystick port, and the
VIA (setting port A to be an input port):

ok_cint = $FF81 ; OpenKernal routine to initialize the screen
ok_cout = $FFD2 ; OpenKernal routine to print a character in A

; Variables

* = $0080

value: .byte ? ; Variable to store the previous value of the joystick
prv: .byte ? ; Copy of value for printing

* = $e000

start: jsr ok_cint ; Set up the screen

lda #$FF ; Set the previous value to $FF
sta value

stz MMU_IO_CTRL ; Switch to I/O Page 0

lda #$00 ; Set VIA Port A to input
sta VIA_DDRA

Next, we print the OpenKernal code to clear the screen, and we print out the byte in value as a
binary number.

loop1: lda #147 ; Print the CBM clear screen code
jsr ok_cout

lda value ; Copy the value to prv
sta prv

ldx #8 ; Loop for all eight bits
loop2: asl prv ; Shift MSB into the carry

bcc is0 ; If it’s 0, print ’0’

lda #’1’ ; Otherwise, print ’1’
jsr ok_cout
bra repeat ; And go to the next bit

is0: lda #’0’ ; Print ’0’
jsr ok_cout

repeat: dex ; Count down
bne loop2 ; Repeat until we’ve done all 8 bits



Next, we read the value of port A. If it is different from value, we save it to value and go back to
print the byte we read. Otherwise, we keep waiting and polling the joystick port.

stz MMU_IO_CTRL ; Switch to I/O Page 0

wait: lda VIA_IORA ; Get the status of port A
cmp value ; Is it different from before?
beq wait ; Yes: keep waiting

sta value ; Save this value as the previous one
bra loop1 ; And go to print it



12
SD Card Interface

The F256jr includes a controller for SD cards. This controller provides for a simplified interface to
SD cards, allowing programs to relatively easily transfer blocks of data to and from an SD card. This
simplified interface has its limitations, and it only works for older, standard SD cards. More advanced
SD cards, like SDHC and SDXC cards, will not work with this simpler interface. The interface does
provide a direct access method, however, which allows programs to send commands and data directly
to an SD card. With adequate programming, any SD card should be usable with this method.

The simplified interface works off the idea of a transfer. The program wanting to use the SD card
sets up a transfer, providing the information the controller needs to perform the transfer, and then
starts the transfer. Once the transfer is completed, the program either receives an interrupt from the
SD controller or monitors the BUSY status to see if the transfer is complete. There are four types of
transfers:

INIT for initializing the SD controller. A program will very rarely need to call this.

DIRECT for sending data directly over the SPI interface to the SD card. This is only needed if the
program needs to access functionality on the card the SD controller does not support.

READ to read 512 bytes of data from the SD card

WRITE to write 512 bytes of data to the SD card

12.1 Reading from the SD Card
To read from an SD card, a program needs to:

1. Set the transfer type to READ

2. Set the SD Address Register with the address of the desired memory block

3. Set the START flag to begin the transfer

4. Wait for the transfer to complete (either poll BUSY or wait for an interrupt)

5. Read bytes from RXR until RCR is 0

12.2 Writing to the SD Card
To write to an SD card, a program needs to:

1. Set the transfer type to WRITE

2. Set the SD Address Register with the address of the desired memory block
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3. Write the 512 bytes to store in the block to TXR

4. Set the START flag to begin the transfer

5. Wait for the transfer to complete (either poll BUSY or wait for an interrupt)

Address R/W Name 7 6 5 4 3 2 1 0
0xDD00 R VER VER_MAJ VER_MIN
0xDD01 R/W SCR — RESET
0xDD02 R/W XTR — XFER_TYPE
0xDD03 R/W XCR — START
0xDD04 R XSR — BUSY
0xDD05 R XSR — WRITE_ERR READ_ERR INIT_ERR
0xDD06 R/W DAR DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0
0xDD07 R/W

SAR

SA7 SA6 SA5 SA4 SA3 SA2 SA1 SA0
0xDD08 R/W SA15 SA14 SA13 SA12 SA11 SA10 SA9 SA8
0xDD09 R/W SA23 SA22 SA21 SA20 SA19 SA18 SA17 SA16
0xDD0A R/W SA31 SA30 SA29 SA28 SA27 SA26 SA25 SA24
0xDD0B R/W SCLK SPI_CLK
0xDD10 R RXR RX7 RX6 RX5 RX4 RX3 RX2 RX1 RX0
0xDD12 R RCR RC15 RC14 RC13 RC12 RC11 RC10 RC9 RC8
0xDD13 R RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0
0xDD14 R RFCR — RX_CLR
0xDD20 W TXR TX7 TX6 TX5 TX4 TX3 TX2 TX1 TX0
0xDD24 R TFCR — TX_CLR

Table 12.1: VIA Registers

VER contains the version of the SD controller, broken up into a major version number and a minor
version number

SCR is the SD control register. There is just one flag here: RESET. If set, this will cause the controller to
reset itself.

XTR is the transfer type register. The SD controller supports four types of transfers: direct access (00),
initialization (01), read from the SD card (10), and write to the SD card (11).

XCR is the transfer control register. There is just one flag: START. When set, this begins the transfer. It
will clear itself when the transfer is done.

XSR is the transfer status register. There is one flag: BUSY. When set, the controller is busy with a
transfer.

XER is the transfer error register. This contains three fields that describes any error condition for the
transfer type that applies.

DAR is the register used to send and receive data for a direct access transfer. This direct access feature
is for low-level access to the SPI interface on the SD card and allows for access to more general
SD cards than the higher level transfers can use.

SAR is the SD address register. This is a 32-bit address for the block of data on the SD card to read or
write.

SCLK is the SPI clock register. It sets the speed of the SPI bus after SD initialization has completed.

RXR is the received data register. All data read from the SD card will be read into a 512 byte FIFO and
can be read by the CPU through this register.
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RCR is the 16-bit count of the number of bytes available to read from the reception FIFO. Note that the
count is in big-endian format.

RFCR is the reception FIFO control register. There is one flag: RX_CLR. When set, it will force the
reception FIFO to clear. The flag will clear itself.

TXR is the transmission data register. All data written to the SD card will be written into a 512 byte
FIFO through this register.

TFCR is the reception FIFO control register. There is one flag: TX_CLR. When set, it will force the
transmission FIFO to clear. The flag will clear itself.





13
PS/2 Keyboard and Mouse

The F256jr provides a single PS/2 port for use with either a keyboard or a mouse. A simple PS/2 key-
board controller is included in the F256jr. The controller emulates the classic Intel 8042 keyboard
controller.

Address R/W Name 7 6 5 4 3 2 1 0
0xD640 R RXD RX_DATA
0xD640 W TXR TX_DATA
0xD644 R STAT PE TE — CMD_DAT SYSFLAG RXF TXF
0xD644 W CMD COMMAND

Table 13.1: UART Registers

RXD Data returned by either the keyboard or the controller

TXD Data to be sent to the keyboard or the controller

STAT Status register of the controller:

PE Parity Error
TE Timeout Error
CMD_DAT 0 = data written to the data register is for the PS/2 device. 1 = data is for the controller
SYSFLAG System flag
RXF If set, receive FIFO contains data
TXF If set, transmit FIFO is full

CMD Commands to the controller (not the keyboard) are written here
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14
Serial and Wi-Fi Port

The F256jr has a simple UART for serial communications. This UART can be used to provide an RS-232
serial connection (via an IDC header on the board compatible with IDC to DB-9 cables) or a Wi-Fi serial
connection using an ESP Feather adapter board. The UART is compatible with the standard 16750.

Address R/W Name 7 6 5 4 3 2 1 0
DLAB = 0

0xD630 R RXD RX_DATA
0xD630 W TXR TX_DATA
0xD631 R/W IER — STATUS ERROR TX_EMPTY RX_AVAIL
0xD632 R ISR — STATUS ERROR TX_EMPTY RX_AVAIL
0xD632 W FCR RXT FIFO64 — — TX_RST RX_RST FIFO_EN
0xD633 R/W LCR DLAB — PARITY STOP DATA
0xD634 R/W MCR — LOOP OUT2 OUT1 RTS DTR
0xD635 R LSR ERROR TEMT THRE BI FE PE OE DR
0xD636 R/W MSR DCD RI DSR CTS DDCD TERI DDSR DCTS
0xD637 R SPR scratch data

DLAB = 1
0xD630 R/W DLL DIV7 DIV6 DIV5 DIV4 DIV3 DIV2 DIV1 DIV0
0xD631 R/W DLH DIV15 DIV14 DIV13 DIV12 DIV11 DIV10 DIV9 DIV8
0xD632 W PSD prescaler division

Table 14.1: UART Registers

RXD (read only) register contains data from the receive FIFO

TXR (write only) writing a byte stores it in the transmission FIFO to be sent over the serial connection

IER this is the interrupt enable register. There are flags for each of the four conditions that the UART
can use to trigger an interrupt

ISR this is the interrupt status register. There are flags for each of the four conditions that can trigger
an interrupt

FCR FIFO control register. This register controls the FIFOs for transmission and receiving:

RXT sets the number of characters in the receive FIFO to trigger an interrupt. See table: 14.5.
FIFO64
TX_RST if set, clear the transmition FIFO
RX_RST if set, clear the receive FIFO
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FIFO_EN if set, the FIFOs are enabled. Otherwise, only a single character can be waiting to send
or pending a read

LCR1 LCR0 Length
0 0 5
0 1 6
1 0 7
1 1 8

Table 14.2: UART Data Length

LCR2 Stop Bits
0 1
1 1.5 or 2

Table 14.3: UART Stop Bits

LCR5 LCR4 LCR3 Parity
— — 0 NONE
0 0 1 ODD
0 1 1 EVEN
1 0 1 MARK
1 1 1 SPACE

Table 14.4: UART Parity
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FCR7 FCR6 Trigger Level (bytes)
0 0 1
0 1 4
1 0 8
1 1 14

Table 14.5: UART RX FIFO Trigger

BPS Divisor
300 5,244
600 2,622

1,200 1,311
1,800 874
2,000 786
2,400 655
3,600 437
4,800 327
9,600 163

19,200 81
38,400 40
57,600 27

115,200 13

Table 14.6: UART Divisors





15
Direct Memory Access

The DMA engine can either write a specific byte to RAM or copy a set of bytes from one location in
RAM to another. The DMA engine can also treat memory as being arranged either linearly (that is, as a
certain number of consecutive locations) or as a rectangle (the data is a rectangular area of an image).

15.1 Linear Data
Linear data (or “1D”, if you prefer) is just a single block of sequential memory locations. When filling
or copying data linearly, you need a destination address (and a source address if copying), and a count
of bytes to copy. That is really all there is to it.

15.2 Rectangular Data
Rectangular data (or “2D”) is a bit more complicated and is meant to be working with image data. With
a bitmap, the pixel bytes are arranged in memory left to right and top to bottom. If the image starts at
address 𝑎 and is 𝑤 pixels wide, then the pixel at (𝑥, 𝑦) can be found at location 𝑎+ 𝑦×𝑤+𝑥. Rectangular
fills and copies are meant to work on data that is arranged in this fashion. In this case, you can use
DMA to fill or copy a rectangular area within that image. As with linear fills and copies, you will need
a destination address (and source address if doing a copy), but instead of a count of bytes you need
the width and height of the rectangular areas affected. But you need one other thing, too. You need to
tell the DMA the geometry of the over-all image... you need to tell it the width of the image containing
the rectangular areas. This is called the “stride” and effectively tells the DMA how many pixels to skip
between lines when it finishes one line of the rectangle before getting to the next line.

START set to trigger the DMA

INT_EN enables triggering an interrupt when DMA is complete

FILL when set, DMA will write a specific byte to memory. When clear, DMA will copy data from a
source address to the destination address

2D when set, DMA copies or fills a rectangular region of memory. When clear, DMA copies or fills a
certain number of sequential bytes

ENABLE set to enable DMA

FD the byte to be written to memory when FILL is set

BUSY status bit set when DMA is busy copying data

SA the 18 bit source address (must be a location in the first 256KB of RAM). Only relevant when FILL
is clear.
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Address R/W 7 6 5 4 3 2 1 0
0xDF00 R/W START — INT_EN FILL 2D ENABLE
0xDF01 W FD7 FD6 FD5 FD4 FD3 FD2 FD1 FD0
0xDF01 R BUSY —
0xDF04 R/W SA7 SA6 SA5 SA4 SA3 SA2 SA1 SA0
0xDF05 R/W SA15 SA14 SA13 SA12 SA11 SA10 SA9 SA8
0xDF06 R/W — SA17 SA16
0xDF08 R/W DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0
0xDF09 R/W DA15 DA14 DA13 DA12 DA11 DA10 DA9 DA8
0xDF0A R/W — DA17 DA16
0xDF0C R/W CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNT0
0xDF0D R/W CNT15 CNT14 CNT13 CNT12 CNT11 CNT10 CNT9 CNT8
0xDF0E R/W — CNT17 CNT16
0xDF0C R/W R/W7 R/W6 R/W5 R/W4 R/W3 R/W2 R/W1 R/W0
0xDF0D R/W R/W15 R/W14 R/W13 R/W12 R/W11 R/W10 R/W9 R/W8
0xDF0E R/W H7 H6 H5 H4 H3 H2 H1 H0
0xDF0F R/W H15 H14 H13 H12 H11 H10 H9 H8
0xDF10 R/W SX7 SX6 SX5 SX4 SX3 SX2 SX1 SX0
0xDF11 R/W SX15 SX14 SX13 SX12 SX11 SX10 SX9 SX8
0xDF12 R/W SY7 SY6 SY5 SY4 SY3 SY2 SY1 SY0
0xDF13 R/W SY15 SY14 SY13 SY12 SY11 SY10 SY9 SY8

Table 15.1: DMA Registers

DA the 18 bit destination address (must be a location in the first 256KB of RAM)

CNT the number of bytes to copy (only available when 2D is clear)

W the width of the rectangle of data to copy (only available when 2D is set)

H the height of the rectangle of data to copy (only available when 2D is set)

SX the width of the “stride” (only available when 2D is set)

SY the height of the “stride” (only available when 2D is set)



16
System Control Registers

16.1 The Buzzer and Status LEDs
The F256jr has several software-controllable LEDs. There are the SD card access LED and the power
LED, but there are also two status LEDs on the board which may be controlled either manually or set to
flash automatically. All the LEDs under “manual” control can be controlled by setting or clearing their
relevant flags in the SYS0 register (0xD6A0) (see table: 16.1). The power LED is controlled by PWR_LED.
The SD card LED is controlled by SD_LED.

Address R/W Name 7 6 5 4 3 2 1 0
0xD6A0 R/W SYS0 RESET SD_WP SD_CD BUZZ L1 L0 SD_LED PWR_LED
0xD6A1 R/W SYS1 L1_RATE L0_RATE — L1_MAN L0_MAN

Table 16.1: System Control Registers

The two status LEDs on the board are a little more complex. They may be in manual or automatic
mode. The two flags L0_MAN and L1_MAN in SYS1 control which mode they are in. If an LED’s flag is
clear (0), then the LED is under manual control and its equivalent flag in SYS0 controls whether the
LED is on or off. If the flag is set, then the LED is set to flash automatically, and the LED’s flashing rate
will be set by pair of bits L0_RATE or L1_RATE according to table 16.2.

For the PC speaker, there is the BUZZ flag. By toggling BUZZ, a program can tweak the speaker and
make a noise.

RATE1 RATE0 Rate
0 0 1s
0 1 0.5s
1 0 0.4s
1 1 0.2s

Table 16.2: LED Flash Rates

16.2 Software Reset
A program can trigger a system reset. This can be done by writing the value 0xDE to 0xD6A2 and the
value AD to 0xD6A3 to validate that a reset is really intended (see table: 16.3), and then setting the most
significant bit (RESET) of 0xD6A0 to actually trigger the reset.
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Address R/W Name 7 6 5 4 3 2 1 0
0xD6A2 R/W RST0 Set to 0xDE to enable software reset
0xD6A3 R/W RST1 Set to 0xAD to enable software reset

Table 16.3: System Reset

16.3 Random Numbers
The F256jr has a built-in pseudo-random number generator that produces 16-bit random numbers
(see table: 16.4). To use the random number generator, a program just sets the enable flag and then
reads the random numbers from RNDL and RNDH (0xD6A4 and 0xD6A5). The program can set the
seed value to better randomize the numbers by storing a seed value in those same locations and then
toggling SEED_LD (set to load the seed value then reclear).

Address R/W Name 7 6 5 4 3 2 1 0
0xD6A4 W SEEDL SEED7 SEED6 SEED5 SEED4 SEED3 SEED2 SEED1 SEED0
0xD6A4 R RNDL RND7 RND6 RND5 RND4 RND3 RND2 RND1 RND0
0xD6A5 W SEEDH SEED15 SEED14 SEED13 SEED12 SEED11 SEED10 SEED9 SEED8
0xD6A5 R RNDH RND15 RND14 RND13 RND12 RND11 RND10 RND9 RND8
0xD6A6 W RND_CTRL — SEED_LD ENABLE
0xD6A6 R RND_STAT DONE —

Table 16.4: Random Number Generator

ENABLE set to turn on the random number generator

SEED_LD set to load a value stored in SEEDL and SEEDH as the seed value for the random number
generator

RNDL and RNDH read 16-bit random numbers from these registers when the random number gen-
erator is enabled

16.4 Machine ID and Version Information
Nine registers are set aside to identify the machine, the version of the printed circuit board, and the
version of the FPGA. See table 16.5 for the various registers. All of the registers are read-only, and only
the chip information will change over the course of the machine’s life span. The machine ID contains
a four-bit code that is common between all the Foenix machines (see table 16.6).

For the F256jr, the machine ID will be 2.

Address R/W Name 7 6 5 4 3 2 1 0
0xD6A7 R MID — ID
0xD6A8 R PCBID0 ASCII character 0: “A”
0xD6A9 R PCBID1 ASCII character 1: “0”
0xD6AA R CHSV0 Chip subversion in BCD (low)
0xD6AB R CHSV1 Chip subversion in BCD (high)
0xD6AC R CHV0 Chip version in BCD (low)
0xD6AD R CHV1 Chip version in BCD (high)
0xD6AC R CHN0 Chip number in BCD (low)
0xD6AD R CHN1 Chip number in BCD (high)

Table 16.5: Machine ID and Versions
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MID3 MID2 MID1 MID0 Machine
0 0 0 0 C256 FMX
0 0 0 1 C256 U
0 0 1 0 F256jr
0 0 1 1 A2560 Dev
0 1 0 0 Gen X
0 1 0 1 C256 U+
0 1 1 0 Reserved
0 1 1 1 Reserved
1 0 0 0 A2560 X
1 0 0 1 A2560 U
1 0 1 0 A2560 M
1 0 1 1 A2560 K

Table 16.6: Machine IDs





17
Using the Debug Port

One of the ways to get software and data onto the F256jr is through the USB debug port. The debug port
uses a USB serial protocol to allow a host computer to issue commands to the F256jr. These commands
allow the host computer to stop and start the CPU, write to memory, read from memory, erase the
flash memory, and reprogram the flash memory. With this port, it is possible to load a program and its
data directly into the F256jr’s memory and start it running. It is also possible to examine the F256jr’s
memory to see what state a program has left it in.

Three are three main tools available to provide user access to the debug port:

Foenix IDE A full-featured emulator and development tool for the Foenix line of computers. Among
the many tools provided by the IDE is a built-in GUI tool to upload and download data to the
F256jr and program the flash. The main limitation of the IDE is that it was written in .NET and
uses features that are available under the Windows API.

Foenix Uploader Tool A stand-alone version of just the uploader tool from the Foenix IDE. This tool
is more limited (it may only support binary files) and is tailored to specific machines.

FoenixMgr A script written in Python 3 which provides command line access on the host computer
to the debug port. It supports files in Intel HEX, Motorola SREC, raw binary, PGX, and PGZ files.
It should run on any computer or operating system that can run Python 3 and provide sufficient
access to USB serial interfaces. It runs under Windows and Linux definitely and may be able to
run under Mac OS X eventually.

17.1 Debug Protocol
The USB debug port is accessed over the USB Serial protocol. Data is sent from the host computer to
the F256jr using data packets, each one of which is a command. The general process is:

1. Host PC sends the command to enter debug mode

2. The F256jr replies

3. Host PC sends one or more command packets

4. The F256jr replies

5. Host PC send the command to exit debug mode

6. The F256jr replies and sends a reset signal to the CPU

The commands sent from the host PC are in the form of command packets show in table 17.1. The
command codes themselves are listed in table 17.3. The F256jr will respond to each command packet
with a response packet as shown in table 17.2. The size of a packet can vary depending on the command.
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Some commands and responses include no actual data payload bytes. Others will transfer actual data
and will include however many bytes of payload are needed.

Each command and response packet includes an LRC check byte, which is simply the exclusive-or
of all the bytes in the packet, except for the LRC value itself. This provides only rudimentary error
checking, but the connection itself is generally pretty reliable, so more sophisticated error checking is
really not needed.

Offset Size Name
0 1 Command sync byte
1 1 Command byte
2 3 Address
5 2 Length
7 𝑛 Payload

7 + 𝑛 1 LRC check byte

Table 17.1: USB Debug Port Command Packet

Command sync byte This is always 0x55 and signals the start of a command packet

Command byte This byte specifies what command is being sent (see table: 17.3)

Address This is a three byte, big-endian integer that provides the address relevant to the command.
For a write command, it is the address of the first block of memory to receive data. For a read
command, it is the address of the first byte of memory to read. For the program flash command,
it is the address of the first byte of data to write to flash.

Length This is the number of bytes to transfer. For a write command, it is the number of bytes to be
sent to the F256jr and will be control the size of the payload section of the write command packet.
For the read command, it is the number of bytes to read from the F256jr and will control the size
of the payload section of the response packet (the payload section of the read command packet
is empty).

Payload This is an option section of the packet that contains the actual data to transfer between the
host PC and the F256jr.

LRC check byte This byte provides for simple error checking on the packet transmission.

Offset Size Purpose
0 1 Response sync byte (0xAA)
1 2 Status bytes
3 𝑚 Payload

3 +𝑚 1 LRC check byte

Table 17.2: USB Debug Port Command Packet

Response sync byte This is always 0xAA and signals the start of a response packet

Status bytes These two bytes contain the status codes for the success or failure of the command

Payload This is an option section of the packet that contains the actual data to transfer between the
host PC and the F256jr.

LRC check byte This byte provides for simple error checking on the packet transmission.
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Command Purpose
0x80 Enter debug mode
0x81 Exit debug mode (resets CPU)
0x00 Read a block of data from the F256jr to the host PC
0x01 Write a block of data to RAM on the F256jr
0x10 Program flash memory from data in F256jr’s RAM
0x11 Erase flash memory
0x12 Erase flash sector
0x13 Program flash sector
0x90 Set the MMU to boot in RAM (F256jr Rev A only)
0x91 Set the MMU to boot in flash (F256jr Rev A only)
0xFE Fetch the revision number of the debug interface

Table 17.3: USB Debug Port Commands

17.2 Flash Sectors
Individual blocks or sectors of flash may be erased or programmed without affecting the rest of flash
memory. This can be done through the commands 0x12 to erase flash sectors and 0x13 to program
them from RAM. The packets for sectors are a little different from the others. The main difference is
that third byte of the packet (ordinarily the high byte of the address) is the number of the sector to
program, and addresses are limited to 16-bits. Each sector is a 4KB block, with 0 being the first 4KB of
flash, 1 being the second 4KB of flash, and so on.

The flash of the F256jr has a limitation that the smallest block of flash that can be erased is 8KB, so
when erasing sectors, two sectors must be erased, not just one. And the sector pairs must be aligned to
8KB. So sector 0 and sector 1 would be erased together, but not sector 1 and sector 2 (although sectors
0 – 3 would be fine).

Programming flash sectors has no such limitation (it is fine to flash just a 4KB block). However, for
simplicity’s sake, it would probably be best for any program directly accessing the debug port to limit
erasing and programming to 8KB blocks. Programming the flash sectors does have a limitation: since
the address is limited to 16-bits, the data can only be stored in the first 64KB of the 256KB system RAM.





18
Memory Maps

Address Purpose
0x00000 System RAM for programs, data, and graphics (256 KB)
0x3FFFF
0x40000 Reserved (256 KB)
0x7FFFF
0x80000 Flash memory (512 KB)
0xFFFFF

Table 18.1: System Memory Map for the F256jr
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Bank Purpose

0

0x0000 MMU Memory Control Register
0x0001 MMU I/O Control Register
0x0002 RAM or Flash
0x0007
0x0008 RAM, Flash, or MMU LUT Registers
0x000F
0x0010 65C02 Page Zero
0x00FF
0x0100 65C02 Stack
0x01FF
0x0200 RAM or Flash
0x1FFF

1 0x2000 RAM or Flash
0x3FFF

2 0x4000 RAM or Flash
0x5FFF

3 0x6000 RAM or Flash
0x7FFF

4 0x8000 RAM or Flash
0x9FFF

5 0xA000 RAM or Flash
0xBFFF

6 0xC000 RAM, Flash, I/O, Text mode character, or color data
0xDFFF

7

0xE000 RAM or Flash
0xFFFA
0xFFFA 65C02 NMI Vector
0xFFFB
0xFFFC 65C02 Reset Vector
0xFFFD
0xFFFE 65C02 IRQ Vector
0xFFFF

Table 18.2: CPU Memory Map for the F256jr
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Start End Purpose
0xC000 0xC3FF Gamma Table Blue
0xC400 0xC7FF Gamma Table Green
0xC800 0xCBFF Gamma Table Red
0xCC00 0xCFFF Reserved
0xD000 0xD0FF VICKY Master Control Registers
0xD100 0xD1FF VICKY Bitmap Control Registers
0xD200 0xD2FF VICKY Tile Control Registers
0xD300 0xD3FF Reserved
0xD400 0xD4FF SID Left
0xD500 0xD4FF SID Right
0xD600 0xD60F PSG Left
0xD610 0xD61F PSG Right
0xD620 0xD62F CODEC
0xD630 0xD63F UART
0xD640 0xD64F PS/2 Interface
0xD650 0xD65F Timers
0xD660 0xD66F Interrupt Controller
0xD670 0xD67F DIP Switch
0xD680 0xD68F IEC Controller
0xD690 0xD69F Real Time Clock
0xD6A0 0xD6AF System Control Registers
0xD6B0 0xD7FF Reserved
0xD800 0xD83F Text Foreground Color LUT
0xD840 0xD87F Text Background Color LUT
0xD880 0xD8FF Reserved
0xD900 0xDAFF VICKY Sprite Control Registers
0xDB00 0xDBFF Reserved
0xDC00 0xDCFF 65C22 VIA Control Registers
0xDD00 0xDDFF SD Card Controller

Table 18.3: I/O Page 0 Addresses

Start End Purpose
0xC000 0xC7FF Text Mode Font Memory
0xC800 0xCFFF Reserved
0xD000 0xD3FF Graphics Color LUT 0
0xD400 0xD7FF Graphics Color LUT 1
0xD800 0xDBFF Graphics Color LUT 2
0xDC00 0xDFFF Graphics Color LUT 3

Table 18.4: Memory Map for I/O Page 1
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