

EMINUS nanoPower

DIY Robotics controller

Applications

EMINUS nanoPower is an Arduino compatible board designed for high voltage and high current applications. Ideal for use in:

- Robotics
- Industrial applications
- Smart Lighting
- Smart Home
- Remote control
- Arduino projects

Bluetooth

- Bluetooth with SPP enabled
- Upload code via Bluetooth direct from Arduino IDE
- Control and monitor your system from PC or Smartphone remotely
- HC-05 module is used.

High power outputs

- 6 unidirectional output ports with
 5A sink/source capability.
- 4 bidirectional ports with open drain output mode and 5A sink capability.
- 4 bidirectional ports are tolerant for up to 25V input voltage.

Board Supply

- 9 18V input voltage
- 10A total current capability

Microcontroller

- Atmega328P is used.
- Arduino Nano bootloader
- Arduino IDE compatible

Analog Features

- A0 and A1 are 5V compatible ADC inputs.
- A2, A3, A6, A7 are 25.5V compatible ADC inputs.
- 8-bit ADC reading from 25.5V compatible will represent 0.1V per read value.

Digital Interfaces

- UART is used to connect with Bluetooth module with jumpers.
 Can be used as external connection.
- SPI is on standard 3x2 pin header.
- I2C is on 4 pin headers with 5V supply and ground. SDA and SCL are pulled up internally.

EMINUS nanoPower

DIY Robotics controller

Pinout diagram

- D0 Input/Output Logic High = 5V, Logic
 Low= GND/ UART Rx (Connected to Bluetooth)
- A1 GPIO/ Analog Input Up to 5V analog input, Digital IO
- D1 Input/Output Logic High = 5V, Logic Low= GND/ UART Tx (Connected to Bluetooth)
- A2 GPIO/ Analog Input Up to 25.5V analog input, Digital IO
- D2 Input/Output Output-Open Drain, Input- Logic Low=GND, Logic High=VCC
- A3 GPIO/ Analog Input Up to 25.5V analog input, Digital IO
- D3 Output/PWM Logic High = VCC, Logic
 Low= GND
- A4 GPIO/ Analog Input Up to 25.5V analog input, Digital IO, I2C SDA
- D4 Input/Output Output-Open Drain,
 Input- Logic Low=GND, Logic High=VCC
- A5 GPIO/ Analog Input Up to 25.5V analog input, Digital IO, I2C SCL
- D5 Output/PWM Logic High = VCC, Logic Low= GND
- A6 GPIO/ Analog Input Up to 25.5V analog input, Digital IO
- D6 Output/PWM Logic High = VCC, Logic Low= GND
- A7 GPIO/ Analog Input Up to 25.5V analog input, Digital IO
- D7 Input/Output Output-Open Drain,
 Input- Logic Low=GND, Logic High=VCC
- D8 Input/Output Output-Open Drain,
 Input- Logic Low=GND, Logic High=VCC
- D9 Output/PWM Logic High = VCC, Logic Low= GND
- D10 Output/PWM Logic High = VCC, Logic Low= GND/SPI SS from ICSP header
- D11 Output/PWM Logic High = VCC, Logic
 Low= GND SPI MOSI from ICSP header
- D12 Input/Output Logic High = 5V, Logic Low= GND/ SPI MISO from ICSP header
- D13 Input/Output Logic High = 5V, Logic Low= GND/ SPI MOSI from ICSP header
- A0 GPIO/ Analog Input Up to 5V analog input¹, Digital IO

For more information visit www.eminuc.cc