
Page 1 of 16

Spec. Rev. 2.0.4

 Specification

Spec. Rev. 2.0.4 – 9/1/2022

Page 2 of 16

Spec. Rev. 2.0.4

Table of Contents

Table of Contents .. 2

1 Introduction .. 4

1.1 Overview ... 4

1.2 Description .. 4

1.3 Supported Firmware Version .. 4

2 Electrical Specifications ... 4

2.1 Logic Level ... 4

2.2 Power .. 4

2.3 Quadrature signal input .. 4

2.4 Pulse width signal input .. 4

2.5 ESD Protection .. 4

3 Pinouts .. 5

3.1 4-pin JST-PH Encoder Channel Connectors ... 5

3.2 7-pin 0.1” header .. 5

3.3 4-pin JST-PH dedicated I2C Connector .. 5

4 Interface Selection .. 6

4.1 Overview ... 6

4.2 Changing the active interface ... 6

5 LED Status indications ... 6

5.1 Overview ... 6

5.2 LED Patterns .. 6

6 Field-Upgradable Firmware .. 7

6.1 Obtaining firmware files ... 7

6.2 Flashing firmware .. 7

7 Registers (I2C / SPI mode) ... 7

7.1 Register access .. 7

7.2 Register Map ... 7

7.3 Register descriptions ... 8

8 Commands .. 9

8.1 Description .. 9

8.2 Command List ... 9

Page 3 of 16

Spec. Rev. 2.0.4

9 Parameters .. 10

9.1 Description .. 10

9.2 Parameter List ... 10

9.3 Setting Parameters.. 11

9.4 Reading Parameters .. 11

9.5 Parameter Descriptions .. 11

10 I2C Interface .. 12

10.1 Overview ... 12

10.2 Registers .. 12

10.3 I2C Wedged Bus Recovery .. 12

11 SPI Interface .. 13

11.1 Bus Specifications.. 13

11.2 Data Protocol .. 13

11.3 Register Map ... 14

12 USB Serial Interface ... 15

12.1 Overview ... 15

12.2 Protocol ... 15

12.3 Command Table .. 15

13 UART Interface .. 16

13.1 Overview ... 16

Page 4 of 16

Spec. Rev. 2.0.4

1 Introduction

1.1 Overview
This document describes the operation of the OctoQuad module and the programming interface.

1.2 Description
The OctoQuad provides a means to read up to eight quadrature encoders or absolute pulse

width encoders on systems where decoding the signals directly using GPIO pins is not feasible.

The OctoQuad supports four different interfaces: I2C, SPI, UART, and USB.

For quadrature encoders, counts are tracked using signed 32-bit integers, and the counts for each

encoder are individually resettable. Additionally, the velocity of each encoder is tracked using a

signed 16-bit integer which represents the delta counts during a user-configurable sampling

interval.

For pulse width measurement, pulse width is measured in microseconds and is reported as a 32-

bit integer. Velocity is measured as the change in microsecond pulse width during the user

configurable sampling interval and reported as a signed 16-bit integer. The velocity calculation

requires user-specified minimum and maximum pulse width values.

1.3 Supported Firmware Version
This document supports firmware version 2.0.x

2 Electrical Specifications

2.1 Logic Level
The OctoQuad module uses 3.3v logic and power for SPI/I2C/UART bus communications, as well

as 3.3v power and logic for quadrature encoder signals. The I2C/SPI/UART and encoder

connections are NOT 5v tolerant!

2.2 Power
The OctoQuad module may be powered either via USB or via the 3.3v pin on the I2C/SPI/UART

bus connection. If powered via USB, the combined current draw from all 8 encoder ports must

not exceed 300ma. If power is provided to the 3.3v pin and USB is also connected, power will be

drawn from the USB host.

2.3 Quadrature signal input
The step rate should not exceed 1 million steps/sec on any individual port (higher rates may work,

but have not been tested). Note that the OctoQuad does NOT provide pull-up resistors for the

A/B quadrature channels.

2.4 Pulse width signal input
The OctoQuad can measure pulse width signals from 1μs to 65535μs

2.5 ESD Protection
The encoder channels and I2C lines are protected from ESD to +/- 15kV (air)

Page 5 of 16

Spec. Rev. 2.0.4

3 Pinouts

3.1 4-pin JST-PH Encoder Channel Connectors
Each encoder channel connector provides power and A/B quadrature or pulse width input signal

connections.

PCB Pin Label Function

G Ground

3 3.3v power supply for encoder

A Quadrature channel A OR Pulse Width Input

B Quadrature channel B

3.2 7-pin 0.1” header
This header provides connections to power the OctoQuad from a 3.3v supply and exposes the I2C,

SPI, and UART interface pins. Note that the pins are muxed and some pins serve multiple

functions (however, only one interface can be active at a time; see section 4).

PCB Pin # PCB Pin Label Function

1 (square pad) GND Ground

2 3.3v 3.3v power input

3 SCK / SDA SPI Clock OR I2C bus data

4 MISO / SCL SPI Transmit OR I2C bus clock

5 CS / URx SPI Chip Select OR UART receive

6 MOSI / UTx SPI receive OR UART transmit

7 RST Reset line (active low)

3.3 4-pin JST-PH dedicated I2C Connector
This connector provides connections to power the OctoQuad and exposes the I2C interface data

pins. It is pin-compatible with the I2C ports on the REV Robotics Control Hub / Expansion Hub.

NOTE: The I2C lines exposed on this connector are electrically connected to the corresponding

pins on the 7-pin header.

PCB Pin Label Function

G Ground

3 3.3v power input

D I2C bus data line

C I2C bus clock line

Page 6 of 16

Spec. Rev. 2.0.4

4 Interface Selection

4.1 Overview
Only one interface (I2C/SPI/UART/USB) can be active on the OctoQuad at a given time. Your

choice of interface is saved to non-volatile storage and is automatically applied at power-up. The

default interface is I2C. WARNING: Operating the OctoQuad in a different interface mode than

that which it has been electrically wired for in the connection to the host device may cause

permanent damage to the OctoQuad or to the host device!

4.2 Changing the active interface
To change the interface, follow the procedure below:

1. Remove power from the OctoQuad

2. Hold the Mode Select button (‘M’ on resin printed case) while applying power to the

OctoQuad. Upon applying power, the LED should light and stay lit.

3. Release the Mode Select Button

4. The LED will now loop displaying a blink sequence followed by a pause to indicate a mode.

Press and release the Mode Select button to cycle through the various modes. The table

below lists how many blinks correspond to which interface mode.

5. Once the LED is indicating the desired mode, press and hold the Mode Select button until

the LED stays on solid.

6. Release the Mode Select Button

7. After a short time, the LED will begin blinking the sequence for the interface just selected.

Your interface choice is now stored in flash and will be applied at all future startups.

Number of blinks Interface

1 I2C

2 SPI

3 UART

4 USB

5 LED Status indications

5.1 Overview
The status light on the OctoQuad is used to indicate various states of communication with a bus

master.

5.2 LED Patterns

5.2.1 Looping sequence of various number of blinks followed by a pause
Indicates that the OctoQuad is powered up and ready to accept communications over the

interface corresponding to the number of blinks (see table in Interface Selection section).

5.2.2 Rapid flashing (7Hz)
Indicates that there is in-flight or recent communication on the bus

Page 7 of 16

Spec. Rev. 2.0.4

5.2.3 Slow flashing (1Hz)
Indicates that bus communication has occurred since power-up, but no recent communication

has occurred.

5.2.4 Very rapid flashing (10Hz)
Internal error; please contact Digital Chicken Labs support (digitalchickenlabs@gmail.com)

6 Field-Upgradable Firmware

6.1 Obtaining firmware files
From time to time, official firmware updates for the OctoQuad may be released. Firmware

binaries may be found at https://github.com/DigitalChickenLabs/OctoQuad. WARNING: Flashing

unofficial firmware may cause permanent damage to the OctoQuad, or to devices to which it is

connected.

6.2 Flashing firmware
To flash a firmware image onto the OctoQuad, follow the procedure below:

1. Remove all power and data connections from the OctoQuad.

2. Press and hold the BOOTSEL button (‘B’ on resin printed case)

3. While holding BOOTSEL, connect the OctoQuad to a computer using the micro-USB port

4. Wait until the emulated USB drive appears on the computer. The LED will remain off.

5. Drag-n-drop the firmware image onto the emulated USB drive

6. The OctoQuad will automatically flash the firmware and reboot. Flashing is complete

when the emulated USB drive disappears and the status LED begins blinking an interface

code.

7 Registers (I2C / SPI mode)

7.1 Register access
Some registers are read-only, some are write-only, and others are read/write, as indicated in the

register map. Writing to a read-only register will have no effect. Data read from a write-only

register is undefined.

7.2 Register Map

Address Type Access Contents
0x00 uint8_t Read-Only Chip ID (will read 0x51)

0x01 uint8_t Read-Only Firmware version (major)

0x02 uint8_t Read-Only Firmware version (minor)

0x03 uint8_t Read-Only Firmware version (engineering)

0x04 uint8_t Write-Only Command Register

0x05 uint8_t Read / Write Command Data Register 0

0x06 uint8_t Read / Write Command Data Register 1

0x07 uint8_t Read / Write Command Data Register 2

https://github.com/DigitalChickenLabs/OctoQuad

Page 8 of 16

Spec. Rev. 2.0.4

0x08 uint8_t Read / Write Command Data Register 3

0x09 uint8_t Read / Write Command Data Register 4

0x0A uint8_t Read / Write Command Data Register 5

0x0B uint8_t Read / Write Command Data Register 6

0x0C – 0x0F int32_t Read-Only Channel 0 data (quadrature count OR μs pulse width)

0x10 – 0x13 int32_t Read-Only Channel 1 data (quadrature count OR μs pulse width)

0x14 – 0x17 int32_t Read-Only Channel 2 data (quadrature count OR μs pulse width)

0x18 – 0x1B int32_t Read-Only Channel 3 data (quadrature count OR μs pulse width)

0x1C – 0x1F int32_t Read-Only Channel 4 data (quadrature count OR μs pulse width)

0x20 – 0x23 int32_t Read-Only Channel 5 data (quadrature count OR μs pulse width)

0x24 – 0x27 int32_t Read-Only Channel 6 data (quadrature count OR μs pulse width)

0x28 – 0x2B int32_t Read-Only Channel 7 data (quadrature count OR μs pulse width)

0x2C – 0x2D int16_t Read-Only Channel 0 velocity (counts or μs / sampling interval)

0x2E – 0x2F int16_t Read-Only Channel 1 velocity (counts or μs / sampling interval)

0x30 – 0x31 int16_t Read-Only Channel 2 velocity (counts or μs / sampling interval)

0x32 – 0x33 int16_t Read-Only Channel 3 velocity (counts or μs / sampling interval)

0x34 – 0x35 int16_t Read-Only Channel 4 velocity (counts or μs / sampling interval)

0x36 – 0x37 int16_t Read-Only Channel 5 velocity (counts or μs / sampling interval)

0x38 – 0x39 int16_t Read-Only Channel 6 velocity (counts or μs / sampling interval)

0x3A – 0x3B int16_t Read-Only Channel 7 velocity (counts or μs / sampling interval)

7.3 Register descriptions

7.3.1 Chip ID register
This register will always read 0x51 and may be used to confirm a proper bus connection with

the OctoQuad.

7.3.2 Firmware version registers
The firmware version follows the scheme major.minor.engineering where each of three

numbers is obtained from the corresponding register. For instance, if the registers read {2, 3, 4}

then the firmware version is 2.3.4.

7.3.3 Command Register & Command Data Registers 0-6
The Command Register can be used to issue various commands to the OctoQuad, with up to 7

bytes of related data (to be written to the command operand registers). See the Commands

section.

Page 9 of 16

Spec. Rev. 2.0.4

7.3.4 Channel data registers
These registers contain either quadrature counts or pulse width (in microseconds) for each

channel, depending on the channel bank configuration. In either case, the value for each

channel is a signed 32-bit integer. (Pulse width will, of course, never be negative).

7.3.5 Channel velocity registers
These registers contain signed 16-bit velocity measurements for each channel.

For quadrature encoders, the velocity is defined as the net change in counts during the velocity

sampling interval (see below). For example, if the sampling interval is 100ms and at the

beginning of the interval the encoder count is 1234 and at the end of the interval the count is

1200, then the velocity value reported in the register will be -34. This would indicate a velocity

of -34 counts/0.1s, or -340 counts/s. To determine the velocity in counts/s, user code must

perform the appropriate multiplication factor based on the configured measurement interval.

The velocity sampling interval can be reduced to prevent overflow of the 16-bit counters when

using encoders that output a very large number of steps per second, or, it can be increased to

provide greater velocity precision on low step-rate encoders.

For pulse width input (absolute encoders) velocity is defined as the net change in microseconds

pulse length during the velocity sampling interval. (See discussion of quadrature velocity above).

Wrap-around is tracked internally at a much higher speed than the velocity measurement

interval, so even if an absolute encoder is rotated more than a full rotation during the velocity

measurement interval, the reported velocity will still be correct. Note, however, that when

using an absolute pulse width encoder, the channel pulse width min/max parameter must be

set correctly.

8 Commands

8.1 Description
The Command Register (see register map) may be used to issue various commands to the

OctoQuad, with up to 7 bytes of related data (to be written to the command operand registers).

Not all commands require this extra data. For those that do, the operand register(s) must be

written in the same bus transaction in which the Command Register is written.

8.2 Command List
The following commands are supported:

Command Description Operand 0 Operands 1-6

0x00 NO-OP (No command)

0x01 Set Parameter Parameter ID Parameter-dependent

0x02 Get Parameter Parameter ID Parameter-dependent

0x03 Save Parameters to flash

0x14 Reset Everything

Page 10 of 16

Spec. Rev. 2.0.4

0x15 Reset Channels 8-bit channel bitfield

8.2.1 Reset Everything Command
This command resets quadrature encoder counts or measured pulse width to zero, and sets all

parameters to their factory defaults. NOTE: this does not save the newly reset parameters to

flash.

8.2.2 Reset Channels Command
This command zeros quadrature count(s) / pulse width measurement for one or more channels.

The first and only operand is a bitfield mapping to channel numbers. Each bit in the operand

corresponds to a channel, e.g., bit 3 corresponds to channel 3. When issuing this command, for

every bit that is set in the operand, the corresponding encoder’s count will be reset.

Multiple channels can be reset in one command operation. For example, writing 01000001 as

the operand will reset channel 6 and channel 0.

Reset Channel Command – Operand 1

Bit 7 6 5 4 3 2 1 0

Effect C7 Reset C6 Reset C5 Reset C4 Reset C3 Reset C2 Reset C1 Reset C0 Reset

8.2.3 Set Parameter Command
This command is used to set the value for a parameter. See below section on parameters.

8.2.4 Get Parameter Command
This command is used to get the current value of a parameter. See below section on

parameters.

8.2.5 Save Parameters to Flash Command
This command may be used to save the current value of all parameters to flash, so that they will

be automatically restored after a power cycle.

9 Parameters

9.1 Description
The OctoQuad supports various user-configurable options (“parameters”) which affect its

operation. Parameters are not directly mapped to registers. Parameters may optionally be saved

to flash so that they are automatically restored after a power cycle. (See Save Parameters to Flash

command).

9.2 Parameter List

Parameter ID Name Values
0x00 Channel directions Channel bitfield (uint8_t)

0x01 I2C Recovery Mode I2C Recovery mode (uint8_t)

0x02 Channel Bank Config Channel Bank Mode (uint8_t)

Page 11 of 16

Spec. Rev. 2.0.4

0x03 Channel Velocity Interval Interval_ms (uint8_t)

0x20 Channel Pulse Width min/max
Min_μs (uint16_t)
Max_μs (uint16_t)

9.3 Setting Parameters
A Parameter may be set by writing the Set Parameter command ID to the command register and

filling the command data registers (sequentially) with the parameter ID, followed by the value(s)

for the parameter. For parameter names in red the parameter values must be preceded by an 8-

bit integer corresponding to the channel index. (I.e. the first command data register filled after

the parameter ID must be the desired channel index, then the parameter value(s) follow in

subsequent command data registers). The general format for setting parameters is as follows:

Setting a Parameter (write to these registers)

Register Command (0x04) Cmd Data 0 (0x05) Cmd Data 1-6 (0x06 – 0x0B)

Data Set Param (0x01) Param Number Parameter Vals. (1st may be ch idx)

9.4 Reading Parameters
Reading the current value of a parameter is accomplished in two steps. First, write the Read

Parameter command ID to the command register and fill the command data register 0 with the

parameter ID to be read. If reading a parameter name in red, then data register 1 must be filled

with a channel index. Once the Read Parameter command has been issued, the current

parameter value will be filled into the command data registers (starting with command data 0)

which can be retrieved with a subsequent read.

9.5 Parameter Descriptions

9.5.1 Channel Directions Parameter
This parameter is used to set the quadrature encoder count direction on a per-port basis. It has

no effect on the channel if the channel is operating in pulse width input mode. The first and only

argument is a bitfield mapping to channel numbers. Each bit in the argument corresponds to a

channel, e.g., bit 3 corresponds to channel 3. When issuing this command, for every bit that is

set in the operand, the corresponding encoder channel will be negated.

Multiple channels can be configured one write to this register. For example, writing 01000001 to

the operand will set channel 6 and channel 0 to be negated.

Encoder Directions Parameter – Argument 0

Bit 7 6 5 4 3 2 1 0

Effect E7 DIR E6 DIR E5 DIR E4 DIR E3 DIR E2 DIR E1 DIR E0 DIR

9.5.2 I2C Recovery Mode Parameter
This parameter is used to set how aggressively the OctoQuad will attempt to un-wedge a hung

I2C bus. It has no effect if the OctoQuad is operating in any interface mode other than I2C. Three

modes are supported:

Page 12 of 16

Spec. Rev. 2.0.4

 0: The OctoQuad will not attempt to perform any type of recovery for a stuck I2C bus

 1: An inter-byte timeout is used for I2C transactions: successive byte transfers must

occur within 50ms of each other in order to prevent the timeout from expiring. If the

timeout expires, the firmware will assume that the bus has become wedged and will

reset the I2C peripheral in an attempt to recover the bus.

 2: Inter-byte timeout from Mode 1, plus pulling clock low for a small period of time if

1500ms elapses with no communications. May help to un-wedge master-side I2C

hardware on an incredibly glitch/noisy bus.

9.5.3 Channel Bank Mode Parameter
The OctoQuad contains two channel banks, covering channels 0-3 and 4-7. This parameter may

be used to set which mode (quadrature or pulse width measurement) each channel bank is

configured for. Possible values are:

 0: All quadrature

 1: All pulse width

 2: First bank quadrature; second bank pulse width

9.5.4 Channel Velocity Measurement Interval Parameter
This parameter is used to set the time interval at which the velocity is calculated for each

encoder. The value is interpreted directly as milliseconds. For example, setting the value of this

parameter for a channel to the decimal value “40” means that the velocity for the respective

channel will be measured at 40ms intervals. The default interval is 50ms. Setting the sampling

interval to 0 will be disregarded.

9.5.5 Channel Pulse Width min/max Parameter
This parameter is used to inform the firmware of the minimum/maximum pulse lengths that an

absolute encoder will output, to enable accurate velocity calculation. This will default to

1μs/1024μs

10 I2C Interface

10.1 Overview
The OctoQuad supports operating as a slave on the standard I2C interface, using the register

model. Bus clock rates of up to 400KHz are supported. The OctoQuad’s I2C address is 0x30.

10.2 Registers
Please refer to the register map in section 7.2

10.3 I2C Wedged Bus Recovery
The OctoQuad can be configured to attempt recovery of a stuck I2C bus in certain scenarios. See

section 9.5.2 for more details.

https://www.ti.com/lit/an/slva704/slva704.pdf

Page 13 of 16

Spec. Rev. 2.0.4

11 SPI Interface

11.1 Bus Specifications
The OctoQuad can be configured to operate in SPI interface mode, at up to 1MHz clock rate. The

SPI framing format used is Motorola format 3 (Clock high when idle, data latched on rising edge).

The slave select line is high when idle. The slave select line must remain asserted for the entirety

of the transaction. Additionally, the slave select line must be asserted for at least 50μs before the

first clock cycle and asserted for at least 50μs after the last clock cycle.

11.2 Data Protocol
The general format for SPI communication with the OctoQuad bears some degree of similarity to

communicating with a register-based I2C device, but nonetheless is quite different.

11.2.1 Flag Byte
All data frames sent from the SPI bus master to the OctoQuad (including not only data frames

used to write, but also those used to perform a read) must begin with a special flag byte. This

flag byte is what distinguishes a read from a write. Since SPI is a full-duplex bus (that is, data is

transferred from master to slave and from slave to master simultaneously on every clock) this

flag byte serves as a simple way to differentiate writes and reads.

Flag Meaning

0x57 (ASCII ‘W’) Master is writing

0x53 (ASCII ‘S’) Master is writing “sticky” Source Address (see below)

0x52 (ASCII ‘R’) Master is reading

11.2.2 Writing
There are two different types of write operations that the master may perform, and these

operations are implicitly distinguished by the length of the data frame: (a) Write Operation

and (b) Write Source Address operation. Moreover, while the ‘W’ flag may be used for either

operation, the ‘S’ flag may only be used with the Write Source Address operation.

In a Write Operation, the Target Address must immediately follow the ‘W’ flag byte. Data bytes

to be written into memory starting at the Target Address directly follow the Target Address in

the transaction. A Write Operation must provide at least one data byte following the Target

Address. Otherwise, it will be interpreted as a Write Source Address operation.

The general format for a Write Operation is shown below:

Page 14 of 16

Spec. Rev. 2.0.4

In a Write Source Address operation, the new Source Address must immediately follow either

the ‘W’ or ‘S’ flag bytes. The master must not send any more bytes following the Source Address;

otherwise, the operation will be interpreted as a Write Operation. The Source Address is the

address in memory from which read operations will begin returning data. The general format for

a Write Source Address operation is shown below:

When performing either type of write operation, the master must ignore all received data from

the OctoQuad.

11.2.3 Reading
All Read Operations begin with the master sending the ‘R’ flag, after which it may continue to

perform N more byte transactions on the bus. All data sent by the master after the ‘R’ flag will

be ignored by the OctoQuad. All Read Operations will begin sending data from the current

Source Address. The first received byte from the OctoQuad (that is, the byte received while the

master is transmitting the ‘R’ flag) will be the Source Address from which the data came. This

means if the master wishes to read N bytes from the OctoQuad memory, it must actually

perform N+1 byte transfer operations on the bus.

What happens after the master has finished performing a Read Operation is determined by

whether the Source Address was set in sticky mode or not. If the Source Address was set in

“sticky” mode, then the Source Address will remain unchanged. If the Source Address was not

set in “sticky” mode, then the Source Address will be incremented by the number of bytes read

during the Read Operation. Using “sticky” mode is helpful should the master wish to repeatedly

read the same block of registers without reading from other locations in-between those reads.

By using “sticky” mode, the master may simply perform the same read sequence repeatedly

without performing a Write Source Address operation.

The general format for a read sequence is shown below:

11.3 Register Map
Please refer to the register map in section 7.2

Page 15 of 16

Spec. Rev. 2.0.4

12 USB Serial Interface

12.1 Overview
The OctoQuad module can be configured to provide a USB virtual serial port interface, supporting

the USB CDC ACM protocol. No baud rate configuration is necessary, because the USB interface is

not bridging to a physical UART.

12.2 Protocol
The USB serial protocol is a simple ASCII text-based format. On power-up, the OctoQuad will

begin streaming a CSV string of all quadrature encoder counts to the host at 10Hz. The host can

issue various one-character commands to the OctoQuad to adjust behavior.

12.2.1 Data Format
For quadrature count / pulse width only readings, the string will take the format

“enc0,enc1,enc2,enc3,enc4,enc5,enc6,enc7\r\n”

For count / pulse width & velocity readings, the string will take the format

“enc0,enc1,enc2,enc3,enc4,enc5,enc6,enc7,vel0,vel1,vel2,vel3,vel4

,vel5,vel6,vel7\r\n”

The values reported are in base 10 (decimal). An example string with velocity reporting might

look like:

“5897,0,0,3974,0,0,0,0,121,0,0,-230,0,0,0,0\r\n”

In this case, encoder 0 count is 5897, encoder 3 count is 3974, encoder 0 velocity is 121, and

encoder 3 velocity is -230

12.3 Command Table

ASCII Char Effect
‘R’ Reset all encoder counts

‘0’ Reset encoder 0 count

‘1’ Reset encoder 1 count

‘2’ Reset encoder 2 count

‘3’ Reset encoder 3 count

‘4’ Reset encoder 4 count

‘5’ Reset encoder 5 count

‘6’ Reset encoder 6 count

‘7’ Reset encoder 7 count

‘V’ Enable velocity reporting (following count reporting)

‘v’ Disable velocity reporting

‘Q’ Set channel bank mode 0 (all quadrature)

‘P’ Set channel bank mode 1 (all pulse in)

Page 16 of 16

Spec. Rev. 2.0.4

‘H’ Set channel bank mode 2 (1st bank Q , 2nd bank P)

‘F’ Set streaming rate to “fast” (60Hz)

‘M’ Set streaming rate to “medium” (30Hz)

‘S’ Set streaming rate to “slow” (10Hz)

13 UART Interface

13.1 Overview
The UART interface runs at 115200 baud and mirrors the USB serial interface protocol.

Special Thanks To

 Chris Johannesen: hardware testing

 Laina Galayde: OctoQuad logo artwork

 Uday Vidyadharan: help with Python sample code

