
HD30A

4CH/8CH Channel Electromagnetic relay modules with I²C controlling interface

HD30A 4CH/8CH Channel electromagnetic relay boards has been designed for easy inductive and resistive high current load switching via I²C communication protocol. For wiring this board is needed only 4 wires - 2 wires with data lines SCL (serial clock) and SDA (serial data) and 2 wires with power supply VCC and GND. On board is special I²C slave address switch, which help to select board slave address. Total available eight slave addresses, therefor on one I²C line can be connected 8 relays modules. That mean user can control up to 64 relays separately. Please note, can't be connected two board with the same addresses on the I²C line. All I²C slave addresses should be different. For the all available I²C slave addresses watch table below.

This HD30A 4CH/8CH channel I²C electromagnetic relay modules are fully compatible with any microcontroller (AVR, PIC, ARM, STM32), popular platform of Arduino and Raspberry, Wi-Fi ESP8266 and ESP32, and with other microcontrollers witch was I²C interface. I²C communication speed is up to 100kHz. Module power supply is 12.0V DC with integrated linear voltage regulators 3.3V and 5.0V. Power supply current should be at least 1000mA @ 12V.

In this module are used high quality electromagnetic relays Rayex/ZETTLER. These relays have SPDT switching terminals and can switch load current up to 30 Amps. Switching load voltage up to 240 Volts. For safe switching load wires connection are used quality screw terminals KF-128-3P. Each relay is indicated with led (color red).

Device description:

- PCB board dimension HD30A 4 Channel 93mm x 130mm
- PCB board dimension HD30A 8 Channel 130mm x 150mm
- PCB board material is FR-4 1.6mm, with solder mask and silk screen
- Operation DC voltage 12V DC
- Maximum current @12.0V 1000mA
- Maximum current per relay up to 30A
- LEDs indicators for each electromagnetic relay channel
- Relays with SPDT switch terminals: Normally Open, Common, Normally Closed
- Relay contact resistance 100 milliohms max. (initial value)
- Relay insulation resistance 100 MOhm min. (DC 500V)
- Relay operation time 8 ms max
- Relay release time 5ms max
- Relay dielectric strength 750 VAC, 50/60Hz between contact
- Relay dielectric strength 1,500 VAC, 50/60Hz between all elements
- Relay expected life Mechanical 10,000,000 operations min.
- Relay expected life Electrical 100,000 operations min. at rated load
- Working temperature range 25 C ~ + 80 C
- Comes with different I²C slave address 0x27 or 0x3F, depends on the batch
- The module contains an 8bit I²C expander PCF8574 or PCF8574A chip
- Each board can be assigned an I²C address between 0x20...0x27 (0x38...0x3F) by the DIP switch
- The logic power supply voltage should match the voltage levels on the I²C bus
- The SDA and SCL lines are pulled up to VCC with 5.6k resistors on the relay module
- Up to 8 boards can be connected to one I²C line

I^2C slave addresses switch description:

	PCF8574 I2C-bus slave address	PCF8574A I2C-bus slave address		
1 2 3	0x27	0x3F		
1 2 3	0x26	0x3E		
1 2 3	0x25	0x3D		
1 2 3	0x24	0x3C		
1 2 3	0x23	0x3B		
1 2 3	0x22	0x3A		
1 2 3	0x21	0x39		
1 2 3	0x20	0x38		

I²C controlling:

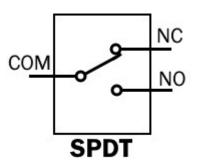
This relay module is based on the I²C 8bit PCF8574(A) I/O I2C expander. Chip should be setup to the output mode. Each relay is controlled via logic levels 0 and 1 in the corresponding bit.

MSB							LSB	
1	1	1	1	1	1	1	0	8th relay is ON
1	0	1	1	1	1	1	0	2nd and 8th relays are ON
1	0	1	0	1	0	1	1	2nd, 4th and 6th relays are ON
0	1	1	1	0	0	1	0	1st, 5th, 6th and 8th relays are ON
0	0	1	0	1	1	1	1	1st, 2nd and 4th relays are ON

C/C++ Arduino IDE code examples:

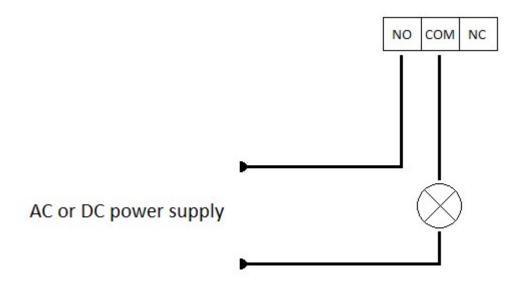
```
Wire.beginTransmission(0x27); // slave address 0x27
Wire.write(0b11111110);
                                 // 8<sup>th</sup> relay is ON
Wire.endTransmission();
Wire.beginTransmission(0x27); // slave address 0x27
                                  // 2<sup>nd</sup> and 8<sup>th</sup> relays are ON
Wire.write(0b10111110);
Wire.endTransmission();
Wire.beginTransmission(0x27); // slave address 0x27
                                  // 2^{\text{nd}} , 4^{\text{th}} and 6^{\text{th}} relays are ON
Wire.write(0b10101011);
Wire.endTransmission();
Wire.beginTransmission(0x27); // slave address 0x27
                                  // 1st , 5th , 6th and 8th relays are ON
Wire.write(0b01110010);
Wire.endTransmission();
Wire.beginTransmission(0x27); // slave address 0x27
                                 // 1st , 2nd and 4th relays are ON
Wire.write(0b00101111);
Wire.endTransmission();
```

Screw terminal description:

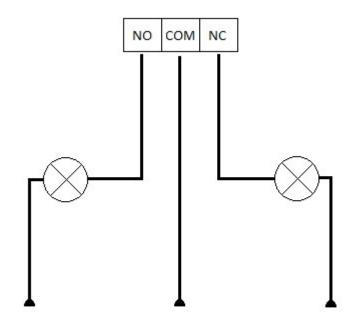

- **VCC** device power supply (+)
- **GND** device ground ()
- **SDA** I²C serial data
- **SCL** I²C serial clock

Switching relay description:

COM – common terminal

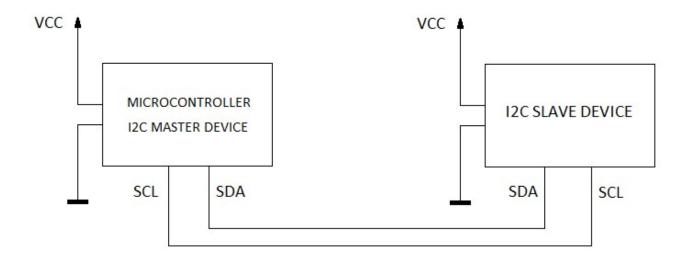

NC – normally closed

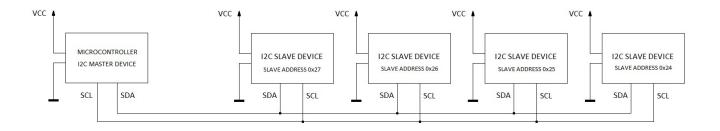
NO – normally opened



Single Pole Double Throw

Single load wiring ON/OFF:


Double load wiring for switching:


AC or DC power supply

I²C wiring master – slave:

Single board wiring:

Multi boards wiring:

