
VALTRACK-V4-VTS Documentation

You should find majority of the details needed for using the hardware here

 Introduction

VALTRACK-V4-VTS as the name itself depicts, is a fully configurable low power Vehicle Tracking System device. It was designed to be versatile

and flexible enough to fit into any vehicle tracking scenario, be it for tracking Bikes, Cars or Trucks.

Features
Specifications
Getting Started
Programming Details
PCB Design
Firmware versions

https://valetronsystems.atlassian.net/wiki/spaces/WIKI/pages/3506224/Features
https://valetronsystems.atlassian.net/wiki/spaces/WIKI/pages/3375137/Specifications
https://valetronsystems.atlassian.net/wiki/spaces/WIKI/pages/3538974/Getting+Started
https://valetronsystems.atlassian.net/wiki/spaces/WIKI/pages/3473442
https://valetronsystems.atlassian.net/wiki/spaces/WIKI/pages/3473449/PCB+Design
https://valetronsystems.atlassian.net/wiki/spaces/WIKI/pages/3375127/Firmware+versions

Specifications

Model No. VALTRACK-V4-VTS [IO-INT-LTE]

Operating Voltage Main Power Input : 12V to 42V DC [Connect to 12V Lead Acid Battery]

Backup Battery Input : 3.7V to 4.2V DC [Connect a single cell 3.7V-4.2V Li-Po or Li-Ion Battery]

Dimensions With Enclosure - Length: 52mm * Width: 65mm * Height: 30 mm

PCB Dimensions - Length: 34mm * Width: 43mm * Thickness: 1.6 mm

Battery Support 3.7V-4.2V DC Li-Po backup battery is supported.
Use > 400mAH capacity battery.
MP2617 Charger chip is used to handle the battery charging.

Cellular module SIM7600G - - For Global useLTE 3G 2G

SIM7600E - - For EuropeLTE 3G 2G

SIM7600A - - For North AmericaLTE 3G 2G

Navigation hardware SE868K3AL GNSS module comes with inbuilt patch antenna

SIM7600x has inbuilt GNSS hardware which needs external active antenna [Bias is already
provided to the GNSS U.FL connector]

Aux Inputs None

Aux Outputs 1x Relay Output (MOSFET DRIVERS) [Optional]

Operating Modes HTTP, SMS, MQTT/TCP

Configuration Methods Bluetooth 5.0 available on board can be used to configure the device using the VALTRACK-V4 Setup
application.

Processor STM32WB55CEU6 ARM Cortex M4 , 64MHz, 512KB of Flash memory

Motion Sensor MMA865x 12-bit, 3-axis Accelerometer

Memory 1-Mbit / 128KB EEPROM for storing parameters and lost pings.

Antenna Cellular : U.FL Connector

1.5 dBi gain Flexible PCB antenna comes attached

 SIM7600x GNSS : U.FL Connector

Patch antenna comes attached

 SE868K3L GNSS : Inbuilt antenna

Connectivity Bluetooth, GPRS, SMS, Call

Flashing options SWD Debug port available on a FFC connector [10 pin, 0.5mm pitch]

MCU can be flashed Over The Air (OTA) using Bluetooth interface

Enclosure Device ships in a standard IP67 rated enclosure.

Has Reverse Polarity Protection

Doesn't have Reverse Polarity Protection

Available on request only !

Getting Started

Opening the enclosure

You need to remove the four screws present in the bottom of the enclosure to open it. Use a star head screw driver.

Inserting the SIM card

Get a Nano-SIM card and insert it into the boards push-pull type SIM card slot.

Powering the device

Power should not be connected to the device during SIM card insertion

VALTRACK-V4-VTS can run from any of the two power sources,

Main Power Input

[VCHG connector]

Can take 12V to 42V DC [Connect to 12V Lead Acid Battery]
Its a JST type connector

Has Reverse Polarity Protection

Backup Battery Input

[VBAT connector]

Can take 3.7V to 4.2V DC [Connect a single cell 3.7V-4.2V Li-Po or Li-Ion Battery]
Use at least 500mAH and above capacity batteries
The battery connected to this port automatically gets charged by VCHG.
Its a JST-XH type connector

Device can start functioning with any of above power sources.

LED Indicators

Once the device is powered ON, The LED will show up and start with all .RED

Once the SIM is registered to the network, the NETWORK LED turns .GREEN

Once the GNSS module gets a location sync, the LOCATION LED turns .GREEN
After 30 seconds of inactivity, all LED will turn OFF to save power and turn ON again on movement detected by Accelerometer.
POWER LED remains all the timeRED

Doesn't have Reverse Polarity Protection

Programming

If you are interested in writing firmware for the VALTRACK-V4-VTS device, you will need to know where is each pin of MCU is connected to.

Since the schematics of the device is not yet openly available, We are providing the MCU pin connection details, which should be able to help
you in determining how is the whole architecture laid out. Watching our device intro video would also help to get an overall idea on the hardware
present on board.

MCU Pinout Details

Pin Number Pin Name Net Name Connected to

1 VBAT 3VDC 3VDC

2 PC14-OSC32_IN CLK_IN 32.768 KHz crystal

3 PC15-OSC32_OUT CLK_OUT 32K.768 KHz crystal

4 PH3-BOOT0 BOOT0 BOOT0 pull down resistor

5 PB8 NET_LED_R Network - RED LED - Cathode pin

6 PB9 NET_LED_G Network - GREEN LED - Cathode pin

7 NRST RESET Debug connector MCU Reset lines via RC network

J60 pin no 1
J56 pin no 6

8 VDDA 3VDC 3VDC

9 PA0 SIM_PWRKEY_3V3 SIM7600x PWRKEY pin through N channel MOSFET.

Making this pin HIGH pulls PWRKEY pin to GND

10 PA1 DTR_3V3 SIM7600x DTR input pin through level translator.

11 PA2 / LPUART1_TX LPUART1_TX SIM7600x RXD input pin through level translator.

12 PA3 / LPUART1_RX LPUART1_RX SIM7600x TXD output pin through level translator.

13 PA4 ANALOG_IN VCHG input through voltage divider resistor network.

R22,R33 govern the voltage at this pin.
Default values : R22 = 100K, R33 = 23.7K, effectively
giving 2.87V for VCHG = 15V

14 PA5 GEN_LED_B Location - BLUE LED - Cathode pin

15 PA6 NET_LED_B Network - BLUE LED - Cathode pin

16 PA7 BAT_LED_R Battery - RED LED - Cathode pin

17 PA8 RELAY RELAY MOSFET driver Gate Input

Open drain driver with Drain pin of MOSFET exposed
on a connector

18 PA9 / USART1_TX UART_TX1 SE868K3AL RX0 input pin

19 PB2 GEN_LED_G Location - GREEN LED - Cathode pin

20 VDD 3VDC 3VDC

21 RF1 RF1 Bluetooth PCB antenna via matching network

22 VSSRF GND System Ground

23 VDDRF 3VDC 3VDC

24 OSC_OUT OSC_OUT 32 MHz crystal

25 OSC_IN OSC_IN 32 MHz crystal

26 AT0 ATO Not connected

27 AT1 AT2 Not connected

Here you will find the details needed for develop your own firmware for the device

28 PB0 INT1 INT1 interrupt output of LIS3DH Accelerometer

29 PB1 GPS_ENABLE Enable input of power gating MOSFET for SE868K3AL
GNSS module

Making this pin high provides 3VDC to SE868KAL
module

30 PE4 RELAY1 Not connected

31 VFBSMPS VFBSMPS 3VDC

32 VSSSMPS GND System Ground

33 VLXSMPS VLXSMPS 3VDC

34 VDDSMPS VDDSMPS 3VDC

35 VDD 3VDC 3VDC

36 PA10 / USART1_RX UART1_RX1 SE868K3AL TX0 output pin

37 PA11 GSM_ENABLE Enable input of power gating MOSFET for SIM7600x LTE
module

Making this pin high provides ~4VDC to SIM7600x
module

38 PA12 GEN_LED_R Location - RED LED - Cathode pin

39 PA13 / JTMS_SWDIO SWDIO Debug connector SWDIO lines

J60 pin no 3
J56 pin no 8

40 VDDUSB VDDUSB 3VDC

41 PA14 / JTMS_SWCLK SWCLK Debug connector SWDIO lines

J60 pin no 2
J56 pin no 7

42 PA15 SOS Tactile switch input

Pulled up, filtered and Active LOW

43 PB3 BAT_LED_B Battery - BLUE LED - Cathode pin

44 PB4 TPS_ENABLE Enable input of switching regulator TPS54240

Making this pin high powers the system via VCHG
connector.

45 PB5 BAT_LED_G Battery - BLUE LED - Cathode pin

46 PB6 / I2C1_SCL IIC_CLK I2C clock of LIS3DH Accelerometer and M24M01
EEPROM

47 PB7 / I2C1_SDA IIC_DATA I2C data of LIS3DH Accelerometer and M24M01 EEPROM

48 VDD 3VDC 3VDC

J60 - MCU Debug Connector [SMT pads] - Pinout Details

Pin Number Pin Name Connected to

1 RESET MCU Reset pin

2 SWCLK MCU SWCLK pin

3 SWDIO MCU SWDIO pin

4 GND System Ground

Not connected by default as it will cause system
into reset loop if no alternate backup battery
power available

5 VCC 3VDC

J56 - Flex Debug Connector [0.5mm 10 pin FFC] - Pinout Details

Pin Number Pin Name Connected to

1 SIM_USB_DN SIM7600x USB_DN pin

2 SIM_USB_DP SIM7600x USB_DP pin

3 SIM_USB_VBUS SIM7600x USB_VBUS pin

4 UART_RX1 SE868K3AL TX0 output pin
MCU USART1_RX pin

5 UART_TX1 SE868K3AL RX0 input pin
MCU USART1_TX pin

6 RESET MCU Reset pin

7 SWCLK MCU SWCLK pin

8 SWDIO MCU SWDIO pin

9 GND System Ground

10 VCC 3VDC

J57 - SIM7600x USB Connector [SMT pads] - Pinout Details

Pin Number Pin Name Connected to

1 SIM_USB_DN SIM7600x USB_DN pin

2 SIM_USB_DP SIM7600x USB_DP pin

3 SIM_USB_VBUS SIM7600x USB_VBUS pin

4 UART_RX1 SE868K3AL TX0 output pin
MCU USART1_RX pin

5 UART_TX1 SE868K3AL RX0 input pin
MCU USART1_TX pin

J62 - VCHG Connector [SMT pads] - Pinout Details

Pin Number Pin Name Connected to

1 VCHG VCHG input of system through FUSE and diode

12VDC to 42VDC input

2 GND System Ground

J41 - VBAT Connector [SMT pads] - Pinout Details

Pin Number Pin Name Connected to

1 VBAT VBAT input of system or Backup battery input

3.7V to 4.2V battery input

2 GND System Ground

Configuration

There is a mobile application presently only available for Android being developed, which supports updating of parameters using the on board
Bluetooth 5 interface.

When you power on the device, it presents itself with the name P2PSRV1

The device runs a Custom P2P server Bluetooth profile code which exposes a few characteristics to be written to or read from to interact with the
device.

Here are the Bluetooth interface details you need to be able to read and write from the device,

Service UUID : 0000fe40-cc7a-482a-984a-7f2ed5b3e58f

TX Characteristic : 0000fe41-8e22-4541-9d4c-21edae82ed19

Rx Characteristic : 0000fe42-8e22-4541-9d4c-21edae82ed19

List of parameters supported :

Index Command Name Description Size [Bytes]

0 Band Network band to be selected, Best to leave default 30

1 Working Mode Devices location sending mode HTTP / TCP / SMS 5

2 Motion Alert Mode Alert CALL or SMS or NONE [Only in SMS Working mode] 5

3 Motion Threshold Accelerometer threshold from 6 to 25 1

4 Contact Number Contact number to be used for sending SMS or CALL 16

5 APN Name Your network providers APN name 20

6 APN User Name Your network providers APN user name if any 20

7 APN Password Your network providers APN password if any 20

8 HTTP URL URL of HTTP post request made in HTTP mode 150

9 HTTP Key Any AUTH key of HTTP post request made in HTTP mode 100

A Ping Interval Location sending interval in seconds 4

B MQTT Host IP / Domain of MQTT broker in MQTT/TCP mode 30

C MQTT Port Port of MQTT broker accepting data in MQTT/TCP mode 10

D MQTT Client ID MQTT client ID of MQTT broker in MQTT/TCP mode 20

E MQTT Topic MQTT Topic of MQTT broker in MQTT/TCP mode 30

F MQTT Protocol Name Protocol name of MQTT broker in MQTT/TCP mode 10

G MQTT LVL LVL value of MQTT broker in MQTT/TCP mode 1

H MQTT Flags Flags used in MQTT packets in MQTT/TCP mode 1

I MQTT Keep Alive Keep alive interval for MQTT connection 4

J MQTT User Name MQTT authentication user name 30

K MQTT Password MQTT authentication password 35

Z Return or Exit Bluetooth Returns from the Bluetooth loop and restarts device 0

Writing new parameter values to the device :

When you want to update a parameters value, you need to write to the TX characteristic given above.

You will find information about parameter configuration by Bluetooth here

Transmission and reception is from phones perspective

The format to write data is as follows,

InputData = '$VALETRON:' + InputIndex + '-' + $('#i'+InputID).val() + '#';

If you look at the above line, its a JavaScript line which forms the command to be sent to the device.

ex.,

if you want to update the Contact Number parameter to 1234567890, the command will become,

$VALETRON:4-1234567890#

Here the content between (hyphen) and (hash) characters which is will be written to the Contact Number parameter whose index - # 1234567890
is .4

“$VALETRON:” is the header and the is like the footer which help the device to parse the command easily.“#”

Once you have formed this command, you have to send the command, in a certain byte format to the device, Look at this code JavaScript code
below,

for(var i=0;i<InputData.length;i++)
{
 data1[0] = 0x01; // Packet Identifer - Parameter Ppdate Packet
 data1[1] = InputData.charCodeAt(i);

 ble.writeWithoutResponse(
 deviceId,
 bluefruit.serviceUUID,
 bluefruit.txCharacteristic,
 data1.buffer, success, failure
);
}

Here we are sending 0x01 as the first byte and our command byte as the second byte. Here 0x01 is a packet identifier that indicates to the
device that the byte that follows is a parameter update data.

ex.,

Our data will be sent to device like this,

0x01, $

0x01, V

0x01, A etc

Reading values from the device :

When you want to read anything from the device, you subscribe to the RX characteristic given above.

Whenever a data is available, the phone is notified by Bluetooth.

When you want to manually read the parameters, Everything explained above holds good and you just need to replace the first byte, which is the
packet identifier with to indicate that its a parameter read command in below code snippet.data1[0] = 0x02;

for(var i=0;i<InputData.length;i++)
{
 data1[0] = 0x02; // Packet Identifer - Parameter Read Packet
 data1[1] = InputData.charCodeAt(i);

 ble.writeWithoutResponse(
 deviceId,
 bluefruit.serviceUUID,
 bluefruit.txCharacteristic,
 data1.buffer, success, failure
);
}

Here we are sending 0x02 as the first byte and our command byte as the second byte. Here 0x02 is a packet identifier that indicates to the
device that the byte that follows is a parameter read data.

ex.,

Our data will be sent to device like this,

0x02, $

0x02, V

0x02, A etc

For example,

You can read the contact number parameter with command.$VALETRON:4-000#

	VALTRACK-V4-VTS Documentation
	Specifications
	Getting Started
	Programming
	Configuration

