

www.makethingshappy.com

Raspberry Pi PICO Shield

The **Raspberry Pi PICO Shield** is an adapter that allows you to install <u>Raspberry Pi</u> <u>PICO</u> System-on-Module in the mikroBUS slot or connect mikroBUS modules (such as <u>MikroElekronika</u>'s Click[®]) to Raspberry Pi PICO modules.

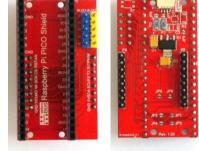
Raspberry Pi PICO pinout:

The correspondence between the Raspberry Pi PICO contacts and the **Raspberry Pi PICO Shield** contacts (connector with mikroBUS interface) is as follows:

	Raspberry Pi PICO		mikroBUS				
			labeling	mikroBUS LEFT	mikroBUS RIGHT	AUX1	AUX2
	1	GPO	0		тх		
	2	GP1	1		RX		
	3	GND	GND	GND			
	4	GP2	2				
	5	GP3	3				
	6	GP4	4		SDA		
	7	GP5	5		SCL		
	8	GND	GND				
	9	GP6	6				
LEFT	10	GP7	7				
Ξ	11	GP8	8				4
	12	GP9	9				5
	13	GND	GND				
	14	GP10	10			1	
	15	GP11	11			2	
	16	GP12	12			3	
	17	GP13	13			4	
	18	GND	GND				
	19	GP14	14	RST			
	20	GP15	15			5	
	40	VBUS	VB				
	39	VSYS	VS		5V		
	38	GND	GND				
	37	3V3_EN	EN				
	36	3V3 (OUT)	3V3	3V3			
	35	ADC_VREF	REF				1
	34	GP28	28				2
	33	GND	GND				
	32	GP27	27				3
RIGHT	31	GP26	26	AN			
RIG	30	RUN	RUN				
	29	GP22	22				
	28	GND	GND				
	27	GP21	21		INT		
	26	GP20	20		PWM		
	25	GP19	19	MOSI			
	24	GP18	18	SCK			
	23	GND	GND		GND		
	22	GP17	17	CS			
	21	GP16	16	MISO			

Signals not used in mikroBUS from the installed Raspberry Pi PICO are routed to the AUX1 and AUX2 connectors, which makes it possible to use almost all the functions of the Raspberry Pi PICO without changing the software.

There is a place for installing a button, the signal from which is sent to reset the RUN pin of the Raspberry Pi PICO.


The bottom-side shield has a Qwiic connector for I²C. The bottom-side also houses pull-up resistors for I²C. They are switchable (using JP jumpers on bottom-side), resistors are connected by default. On the bottom-side there are also jumpers to select direct and cross-connect RX and TX to the corresponding mikroBUS signals.

List of jumpers on the bottom-side and their default states:

s.	Function	Default state
JP1	direct or cross connection for TX0 (default	CLOSE
JP2	is direct)	OPEN
JP3	direct or cross connection for RX0 (default	CLOSE
JP4	is direct)	OPEN
JP5	3V3 source for mikroBUS (JP1 - Feather,	OPEN
JP6	JP2 - Shield), default Shield	CLOSE
JP7	pull-up for i2c	CLOSE
JP8	pull-up for ize	CLOSE
JP9	BME280 address on i2c	OPEN

The **Raspberry Pi PICO Shield** contains (on the bottom-side) the voltage regulator <u>AMS1117-3.3</u> and the necessary capacitors. On the bottom-side there is a jumper defining the 3V3 source on the mikroBUS (from the installed to Raspberry Pi PICO slot module or from AMS1117-3.3). By default - from the installed module.

Optionally, a <u>BME280</u> is installed on the bottom-side of the module (7-bit address on $I^2C = 111011x$). The address for BME280 is selected with jumpers on the bottom-side. The default address should be 1110111.

Raspberry Pi PICO Shield size - 51 x 29.21 mm.

The main areas of application of the shield:

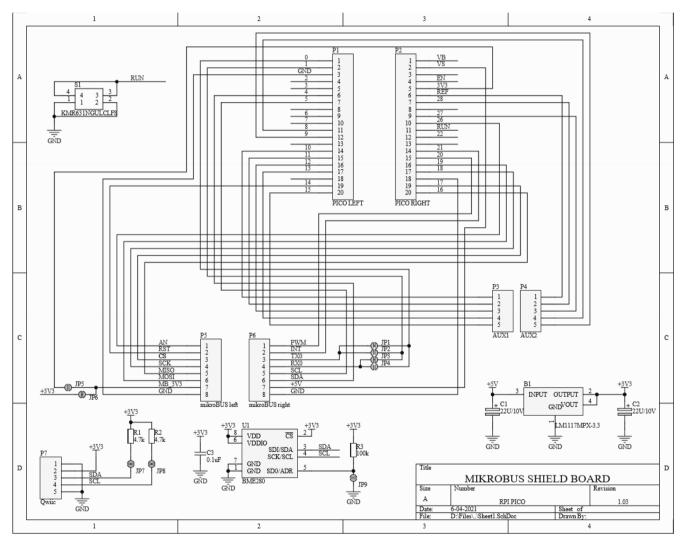
- Data acquisition systems (DAS)
- Scientific and medical devices
- Smart home and building automation
- HVAC and air monitoring
- Consumer electronic
- Toys

With **Raspberry Pi PICO Shield**, it is easy to use Raspberry Pi PICO to control the following Pro Series I/O modules:

Image	Name	Characteristics	
	I2C 4AI ADS1x15 Pro	4 channels differential analog input based on 16	
55656		bit ADS1115 and 12-bit ADS1015 ADC.	
OT LET		The two Texas Instruments ΔΣ (delta-sigma)	
		ADCs installed on the module. Voltage	
		measurement ranges: 0-0.5V, 0-5V, 0-10V, ±	
		0.5V, ± 5V, ± 10V. Current measurement ranges	
		0-20mA, 4-20mA, ± 20mA, 0-40mA.	
		Measurement speed: up to 860 measurements	
		per second for ADS1115 and up to 3300	
ALLEAR .		measurements per second for ADS1015.	

I2C 2RO+2AI Pro	2 Omron G5Q-14 relays and 2 analog input channels based on an ADC from Texas Instruments (either ADS1115-Q1 or ADS1015). Voltage measurement ranges: 0-0.5V, 0-5V, 0- 10V, ± 0.5V, ± 5V, ± 10V. Current measurement ranges: 0-20mA, 4-20mA, ± 20mA, 0-40mA. Measurement speed: up to 860 measurements per second for ADS1115 and up to 3300 measurements per second for ADS1015.
I2C 2RO+2DI Pro	2 Omron G5Q-14 relays and 2 digital input channels (based on Texas Instruments ISO1211). The modules allow you to enter the values of 2 digital signals, both DC and AC. Supports 9-V to 300-V DC and AC digital input. Compliant to IEC 61131-2; Type 1, 2, 3 characteristics for 24-V isolated digital inputs. Accurate Current Limit for Low-Power Dissipation: – 2.2 mA to 2.47 mA for Type 3. Maximum transient isolation voltage (up to 60s) – 3600V.
I2C 4DO LS (BTS3160D) Pro	4 channels low-side digital output, based on BTS3160D.
I2C 4DO HS (TPS1H100) Pro	4 channels high-side digital output, based on TPS1H100.
I2C 2RO + SPI 2RTD Pro	2 Omron G5Q-14 relays and 2 digital input channels (based on Texas Instruments ISO1211).

This is what the Raspberry Pi PICO looks like, installed with the **Raspberry Pi PICO Shield** in the module **IoThing Digital** (aka **I2C 2RO + 2DI Pro**)



You can also learn more about the **I2C 2RO + 2DI Pro** module on the <u>IoThings Digital</u> page at Crowd Supply.

MikroElekronika manufactures numerous modules with mikroBUS interface - Click[®] modules.

All these modules can be easily connected directly to the XIAO and QT using the **Raspberry Pi PICO Shield** schematic:

