
MQTT ioModul 16DI/16DO V1.006

MQTT IOMODUL 16DI/16DO

PRODUCT DESCRIPTION

• Dimensions (L/W/H): 104 x 92 x 30 mm

• Power supply module 5V / 190mA (idle mode)

• 16 digital inputs, 12-24V based, galvanically isolated

• 16 digital outputs, 12-24V based, galvanically isolated, maximum switching load per

output: 50 mA

• Ethernet RJ45 interface

• MQTT protocol (3.1.1, QoS 0, Port 1883) is used to set an output or inform about

input changes

• Status inputs and outputs as well as status of modul is signaled by LED

• Easy parameter configuration (IP addresses, debounce time, …)

• No specialized outputs, so that voltages up to 230V can switched via coupling relay

• No built-in power, input and output connectors (spacing: 3,5 mm)

Figure 1: circuit board with jumper
Figure 2: ESP32 module

Figure 3: Wiznet W5500

2

Figure 4: Circuit design for inputs

Figure 5: Circuit design for outputs

HARDWARE

A stable 5V external power supply is required for operation. The 5V supply is either via socket
(connector CN 1) on the circuit board or via the USB-UART interface of the ESP32. For
reasons of stability, we recommend using the connector on circuit board. The simultaneous
use of 5 V on the circuit board and USB-UART to supply the device can lead to damage.

External 12-24 V voltage power supply is required for operation of I/O ports.

5V ground line and 24V ground line are routed separately on the board, connection of both

lines removes galvanic separation (see circuit diagram).

Interface Definition

INPUT 01-16 : Digital input channels

OUTPUT 01-16 : Digital output channels

5V : 5V power supply for operation
GND : ground line 5V

24V : 12-24V power supply for operation of I/O ports
GND : ground line 24V

3

Figure 6: HTML page settings

CONFIGURATION-MODE

When jumper (JP1) is set to yellow circled slot (see figure 1) while ioModul is booting
configuration-mode is set and the module starts as HTTP server. In this mode the ioModul
always tries to establish a DHCP connection and the DHCP server assigns ioModul an IP

address. When HTTP server started successfully the blue LED on ESP32 module (see figure
2) flashes every 100ms. If problems occurred during boot, the blue LED signals this by a
different flashing code (see table blue LED indicator description).

Determine IP address of the ioModul and enter IP address (port 80) in a browser to configure
settings.

Additional information:

• Spaces and special characters are not permitted. Exceptions: forward slashes (/) in topic fields,

colons (:) in MAC address and periods (.) in IP address fields.

• Maximum path length: 60 characters

• If a non-compliant attribute value is found, data will not be saved.

• “Subscription Topic”: message topic on which the module is waiting to react to incoming MQTT

messages (e.g. switch output 12, provide log messages, etc.)

• “Publish Topic”: ioModul sends notifications to MQTT broker with defined topic

• “Topic or Payload LastWill”: if one of these fields is empty, the ioModul does not register “LastWill”

message when connecting to broker.

• “Report input”: set verbosity of inputs, possible values are: R= send notification on reboot,

reconnection and changes; O=only on changes, send no notification on reboot or reconnection

• “Response output”: set verbosity of output, possible values are: N=no response; S= Special, only

output which has been written is returned; A= all outputs are returned

• “Debounce time”: Value between 1 and 500. Time in milliseconds until module allows a new state

change at input channels, status changes on a PIN generate a new MQTT message. Status changes

within debounce time threshold are not passed through, new status is only forwarded after debounce

time elapsed.

4

WORKING-MODE

When jumper (JP1) is set to green circled slot (see figure 1) while ioModul is booting working-
mode is set and module works as MQTT client. The device runs with a fixed IP address or an
IP address assigned by the DHCP server, depending on the configuration. If the ioModul is

running most of the time, a fixed IP address is recommended. When MQTT client started
successfully the blue LED on ESP32 module (see figure 2) flashes slowly (1000ms on and
400ms off). If problems occurred during boot the blue LED indicates this by a different flashing
code (see table blue LED indicator description).

After a successful MQTT connection is established, the following messages can be sent to
the ioModul and the module will respond as described below.

a) Request with “…/State” and Payload “0” to ioModul => ioModul sends “Online”
message in response.

TOPIC

PAYLOAD

REQUEST

<Subscription Topic>/State

0

RESPONSE

<Message Topic>/State

Online

Example with default topics:

TOPIC

PAYLOAD

REQUEST

ioModul/Sub/State

0

RESPONSE

ioModul/Pub/State

Online

b) Request with “…/State” and Payload “1” to ioModul => ioModul sends state of all
inputs as JSON string in response.

TOPIC

PAYLOAD

REQUEST

<Subscription Topic>/State

1

RESPONSE

<Message Topic>/State

{“Inputs”: {“01”: “<ON or OFF>”, ...
“16”: “<ON/OFF>”} }

Example with default topics:

TOPIC

PAYLOAD

REQUEST

ioModul/Sub/State

1

RESPONSE ioModul/Pub/State

{"Inputs": {"01": "ON", … "16": "OFF"} }

c) Request with “…/State” and Payload “2” to ioModul => ioModul sends state of all
outputs as JSON string in response.

TOPIC

PAYLOAD

REQUEST

<Subscription Topic>/State

2

RESPONSE

<Message Topic>/State

{“Outputs”: {“01”: “<ON or OFF>”, ...
“16”: “<ON/OFF>”} }

Example with default topics:

TOPIC

PAYLOAD

REQUEST

ioModul/Sub/State

2

RESPONSE

ioModul/Pub/State

{"Outputs": {"01": "ON", … "16": "OFF"} }

5

When an external 12-24 V power supply is connected to the ioModul (in addition to the
existing MQTT connection) input and output ports are fully operational.

d) For switching an output send the following MQTT message to the ioModul. The
module responds depending on the value “Response output” (see configuration

settings).

TOPIC

PAYLOAD

REQUEST

<Subscription Topic>/OUT<xy>

<ON or OFF>

RESPONSE

<Message Topic>/OUT<xy>

<ON or OFF>

Example with default topics (Response output A)

TOPIC

PAYLOAD

REQUEST

ioModul/Sub/OUT01

ON

RESPONSE

ioModul/Pub/OUT01

ON

e) If an input is switched (i.e. is pulled to ground or is removed from ground) the module

sends the following MQTT message to the MQTT broker.

TOPIC

PAYLOAD

MESSAGE

<Message Topic>/IN<xy>

ON or OFF

Example with default topics for input 1:

TOPIC

PAYLOAD

MESSAGE

ioModul/Pub/IN01

ON

Special functions for monitoring ongoing operations.

f) Request with “…/State” and Payload “3” to ioModul => ioModul sends version
information as JSON string in response.

TOPIC

PAYLOAD

REQUEST

<Subscription Topic>/State

3

RESPONSE

<Message Topic>/State

{“Versioninfo”: {“Version”: …} }

g) Request with “…/State” and Payload “4” to ioModul => ioModul sends runtime

informations in response.

TOPIC

PAYLOAD

REQUEST

<Subscription Topic>/State

4

RESPONSE

<Message Topic>/State

{“RTI”: {“maxLoopTime”: <xyzv>, … } }

Example with default topics:

TOPIC

PAYLOAD

REQUEST

ioModul/Sub/State

0

RESPONSE

ioModul/Pub/State

{"RTI": {"maxLoopTime": 51, "minLoopTime": 4711,
"timeAverage": 66, "timeCurrent": 67, "loopsOverHun": 5,

"loops": 483376, "ipAdr": "192.168.2.12",
"reconCause": "reboot"} }

6

Structure of runtime informations:
All tasks are sequentially processed. When module returns back to first task a loop is

completed. Required time for loop completion varies, therefore the following information
is collected (in addition to IP Address and reconnect cause):

• “maxLoopTime”: Longest time the module needed for loop completion; resetted with every request
(state 0)

• “minLoopTime”: Shortest time the module required for loop completion; resetted with every request
(state 0)

• “timeAverage”: average loop time
• “timeCurrent”: current loop time
• “loops” and “loopsOverHun”: ioModul counts amount of loops that needed more than 100us, based

on the value “loops"; this counter is resetted after 1000000 loops.
• “ipAdr”: IP address of the ioModul
• “reconCause”: Reason why it was necessary to reconnect (reboot, Ethernet was interrupted, MQTT

was interrupted, root cause not defined)

Times are in microseconds.

h) Request with “…/State” and Payload “5” to ioModul => ioModul sends last 16 logging

messages and microsecond in multiple responses.

TOPIC

PAYLOAD

REQUEST

<Subscription Topic>/State

5

RESPONSE

<Message Topic>/State

{"Log": {"01": "<micros>: <log01>”} }

RESPONSE

…

…

RESPONSE

<Message Topic>/State

{"Log": {"16": "<micros>: <log16>”} }

i) ioModule can be set to send a MQTT message if loop completion takes longer than a

defined number of microseconds by sending the following message. Request with
“…/State” and payload 4-digits (number of microseconds between 1000 and 9999)
defines the threshold. This functionality is not activated by default but must be explicitly
activated with every restart.

TOPIC

PAYLOAD

REQUEST

<Subscription Topic>/State

<vxyz>

Message if loop completion takes longer.

TOPIC

PAYLOAD

MESSAGE

<Message Topic>/State

{“Timeloop”: <vxyz>}

Example for reporting all loops taking more than 2000 microseconds:

TOPIC

PAYLOAD

REQUEST

ioModul/Sub/State

2000

MQTT message example when IoModul requires 3512 microseconds for loop completion.

TOPIC

PAYLOAD

MESSAGE

ioModul/Pub/State

{“Timeloop”: 3512}

7

RUNNING IOMODUL

The following instructions explain how to setup ioModule for first usage.

It is assumed that a DHCP server and a MQTT broker is already installed in your network and

can be accessed using it’s IP address and port. Lots of tutorials about MQTT message broker
setup are already available online, Mosquitto is the recommended MQTT broker here.

For testing purposes it is also very helpful to have another MQTT client already and working

(i.e. it can send and subscribe to messages, consider using mqtt.fx or Chrome MQTTLens as
MQTT test client). Then subscribe to topic "ioModul/#" on the MQTT client so that you can
follow all messages to and from ioModul.

Before starting make sure you have flashed the ESP32 module with the firmware (if not see
Flash ESP32) and that ESP Module and Wiznet W5500 are installed in the correct orientation
on the board (figure 1). Ethernet cable must be plugged into the W5500 and DHCP server
must be running. Set jumper (JP1) to yellow circled slot (see figure 1), the Configuration-Mode.

Connect a stable 5V external power supply to the board. The red LED of the ESP32 (see figure
2) lights up when the module is powered on. The blue LED of the ESP32 must start to light up.
Please wait a short time until the final state is reached. The LED indicates operating mode.

Slow flashing (2000ms on/ 400ms off) indicates operation in Working-Mode, fast flashing
(100ms on/ 100ms off) operation in Configuration-Mode. Other flashing indicates a problem
(see table Indicator blue LED description).

When module is in Configuration-Mode, the DHCP server has assigned an IP address to the
device. Use a network scanner (for example SoftPerfect Network Scanner or something
similar) to determine its IP address. Enter the determined IP address in a browser.

Please change only its IP address, DNS, gateway, netmask and MQTT IP address in
configuration settings in first step. If MQTT Broker is configured to require client authentication
before a connection is allowed, enter a valid username (MQTT user) and password (MQTT
key). Leaving remaining fields to default settings will make further steps easier. Settings can

be changed at any time if required. Save your settings.

Set the jumper to Working-Mode (see figure 1) and reboot ioModul by pressing the reset button
on ESP32. ioModul should now start in Working-Mode with LEDs flashing slowly.

Send the following MQTT message to the server using a MQTT client:

Topic: ioModul/Sub/State Payload: 0

The ioModule should send a message back to MQTT broker which distributes the message to
all subscribers:

Topic: ioModul/Pub/State Payload: Online

An external power supply (12-24 V) must be connected to the ioModul for testing inputs and
outputs. For details see figure 4 and 5.

Send the following MQTT message to the server using a MQTT client:

Topic: ioModul/Sub/OUT01 Payload: ON

8

Output LED01 should light up.

Connect input 01 to ground. The Input LED01 should light up and the ioModul should send the
following message:

Topic: ioModul/Pub/IN01 Payload: ON

RESPONSE TIMES

Switching times depend on system landscape and current ioModule load including network
and MQTT broker also latency of all components involved (i.e. ethernet latency, computer
hardware and operating system latency) is an influencing factor. Realtime ability is also not
given as recipient does not acknowledge message receipt and message sender does not store

and re-transmit messages.

Reference times in this document were determined in a 1000 Mbit/s LAN using Mosquitto
server on a Raspberry PI 3 with fixed IP address. Times were measured while CPU was idle.

Response times listed here should provide an order of magnitude that is usually reached.
Individual temporal outliers are possible (due to e.g. ethernet instability). Please note that time
compliance therefore cannot be guaranteed.

• A "normal" loop pass takes less than 100us. However, the MQTT client updates its
status on the MQTT broker (KeepAlive) before an agreed time period elapses. In above
setup, this happens about every 100.000 passes loop time then increases to about

1,5ms. If MQTT session is reconnected or ethernet connection is unstable the time for
loop completion increases.

• Time (t2-t1) to set an output from send a MQTT message to the ioModul to receiving

the response that the output has been set: about 45ms

• Time (t2-t1) to set an output from send a MQTT message to the ioModul to receiving

the message that an electrically connected input has been changed: about 45ms

9

TABLE BLUE LED INDICATOR DESCRIPTION

Status LED Class Description

WORK_MODE

2000ms(on)
400ms (off)

normal ioModul operates in Working-Mode as MQTT-
Client and sends and receives MQTT messages.

CONF_MODE

100ms (on)
100ms (off)

normal ioModul operates in Configuration-Mode as
HTTP-Server. Start configuration.

FILE_ERROR

1x400ms
pause (1500)

error Problems with file operations, if necessary,
change ESP32.

ETH_
CONNECT

2x400ms
pause (1500)
(1500)

problem ioModul fails with DHCP connection; please
check ethernet network connection.

MQ_CONNECT

3x400ms
pause (1500)

problem ioModul is unable to connect to MQTT broker.
Please check broker availability.

ETH_CABLE

4x400ms
pause (1500)

problem Please check physical ethernet connection.

W5500_
ERROR

5x400ms
pause (1500)

error Problems with ethernet shield, if necessary,
change wiznet W5500.

CDATA_
ERROR

6x400ms
pause (1500)

problem Problems with configuration data. Please
check data in Configuration-Mode.

MAC_ERROR

1200, 1x400ms
pause (1500)

problem MAC-Address not available, default address
is used. Please change MAC-Address.

MQIP_ERROR 1200, 2x400ms
pause (1500)

problem Problems with IP address or port of the MQTT
broker. Please check configuration data.

MOIP_ERROR 1200, 3x400ms
pause (1500)

problem Problems with IP address of the ioModul.
Please check configuration data.

DGN_ERROR 1200, 4x400ms
pause (1500)

problem Problems with DNS, gateway or netmask.
Please check configuration data.

PCF_ERROR 1200, 5x400ms
pause (1500)

error Problems with I2C devices, if necessary,
change circuit board

 1200, 7x400ms
pause (1500)

error system error

This error should never occur ☹.

10

BOARD

11

PHOTOS

12

CIRCUIT

13

FLASH ESP32

The following steps describe how to flash your ESP32 by uploading the BIN files via the USB-
to-UART adapter.

PLEASE NOTE THAT NO EXTERNAL 5 VOLT POWER SUPPLY MAY BE

CONNECTED DURING THIS PROCESS!!!

1.) Download and store ioModul binary files from

http://xmmqtt.de on your computer

2.) Download and unzip the “Flash Download Tools

(ESP8266 & ESP32 & ESP32-S2)” from

https://www.espressif.com/.

3.) Start the flash_download_tool_3.8.5.exe

4.) Press “Developer Mode” and then “ESP32

Download Tool”

5.) Check that the ESP32 is connected to the

Computer and select the COM-Port

6.) Press “START”. The synchronization

with the ESP32 starts. If data was

successfully read by the ESP, it is

displayed in the lower area (green

status field shows “FINISH”).

7.) Enter the path information to bin

files followed by Flash parameter

(data marked in green in upper area)

8.) Press “START” again.

If the download to ESP32 does not start
automatically switch the ESP32 to flash

mode. After successful completion green
status field shows “FINISH”.

ESP32 is now successfully flashed.

https://www.espressif.com/

