
Getting Started with the
ZTO-80 SBC

v 3.1

Written by Jacob Hahn
September, 2020

https://github.com/jacobtohahn/ZTO-80
Edition 1.5

https://github.com/jacobtohahn/ZTO-80


Table of Contents
Introduction 2

System Overview 3
CPU 3
Memory 3
I/O 4
Schematic 6
PCB 7
Headers and Jumpers 8

Assembly 10
Components List 10
Tools 14
Assembly Steps 14

Software Setup 18
Flashing BASIC 18
Using your SBC with your PC 22

Troubleshooting 25

Contact 26

License 27

1



Introduction
The ZTO-80 SBC is a custom-built single board computer

built around the Z80 CPU from Zilog. It was designed from the
ground up to be the ultimate board for beginners to learn to
develop for the Z80, while also being expandable enough to allow
advanced users to have a capable platform to work with.

The goal of this document is to be a guide for getting started
with the ZTO-80 SBC, even with no prior experience with the Z80.
It starts with a basic overview of the system, and from there dives
deeper into the specific parts. It also includes an assembly guide
for building the system from the bare PCB.

As new revisions of the ZTO-80 SBC are released, I will update
this guide to reflect the newest changes. The newest version of the
guide can always be found on my GitHub page, which is linked on
the cover of this document.

If you have any problems or encounter any errors in this
document, feel free to open up an issue on the GitHub page
linked on the cover.

The ZTO-80 SBC is certified Open Source Hardware US000653

2

https://certification.oshwa.org/us000653.html


System Overview
Here’s a general overview of the ZTO-80 SBC’s onboard hardware.
See the schematic for memory and I/O addresses.

CPU
The heart of the ZTO-80 SBC is the Z80 CPU, designed by Zilog. It
has an 8-bit data bus, a 16-bit address bus, 208 bits of internal
register space, and can run at speeds of up to 20MHz, making it a
powerful CPU for its class. It can directly address up to 64K of
memory using its address bus.

Memory
The memory of the ZTO-80 SBC is split into two sections: ROM and
RAM.

ROM
The system contains 32K of ROM space, which is used to store
programs. It is never written to by the CPU; instead, the user must
program it with whatever software they would like to use
beforehand. The CPU reads this program and executes the
instructions contained within it. ROM keeps its contents even
when power to the system is removed.

RAM
The other 32K of address space is taken by RAM. This is the CPU’s
working memory. It can be directly written to and read by the CPU
and is used to store data such as program variables. However,
unlike ROM, all data stored on RAM is lost when power to the
system is removed.

3



I/O
The Z80’s 8-bit I/O space is split among multiple devices on the
ZTO-80 SBC. These devices each have a different purpose and
provide features to the system.

SIO
The Z80 SIO is a peripheral chip made by Zilog that provides serial
I/O functionality. It features two serial ports, programmable
functions such as baud rate and character length, and modem
control signals on both ports.
On the ZTO-80, both serial ports are connected to FTDI pinout
compatible headers (standard on most TTL serial to USB cables).
All features can be customized in software, allowing for incredibly
versatile serial functionality.

PIO
The Z80 PIO is a peripheral chip made by Zilog that provides
parallel I/O functionality. It features two parallel channels, each
capable of functioning either as an input or output, four modes of
operation for each port, and handshaking functionality on both
ports.
On the ZTO-80 SBC, both ports are connected to headers for full
user access. Channel B is also connected to a darlington transistor
array, allowing it to output up to 500mA on a single output at a
time, and up to 120mA on all outputs at the same time. This can be
used for applications such as driving motors.

CTC
The Z80 CTC is a peripheral chip made by Zilog that provides
counting and timing capabilities to the SBC. It contains 4
individual counters/timers, all with trigger inputs and the first

4

https://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_CABLES.pdf


three with zero count outputs. It can send an interrupt to the CPU
when a timer reaches zero, which makes it easy to implement
delays in software without the use of loops.
The CTC is mostly controlled by software, with very little external
circuitry required. The only header for the CTC breaks out the
trigger inputs and the zero count outputs, so that it is easy to
connect timer/counter units to each other to create larger
counters and longer time delays.

5



Schematic

6



PCB

7



Headers and Jumpers
This section describes the various headers and jumpers located on
the ZTO-80 SBC. Take a look at the schematic for pinouts.

J1 and J2: Expansion Header
J1 is the standard ZTO-80 Expansion Header. It is the same header
used to connect any modular system module to a backplane.
J2 is added on to the main header to add support for the Z80
Family interrupt priority structure.

J4: CPU Control Signal Header
J4 breaks out the control signals used by the CPU to provide a way
to more directly control the Z80 using external signals.

J5: CTC Control Signal Header
J5 breaks out the channel control (trigger and zero count) signals
from each of the 4 CTC channels. You can use jumpers on these
pins to tie channels together for larger timers or counters.

J6 and J9: TTL Serial Headers
J6 and J9 are the TTL serial outputs from channel A and B,
respectively. They are designed to be compatible with the
standard FTDI pinout, so any generic TTL serial to USB cable
should be compatible with them.

J7 and J8: PIO Headers
J7 and J8 are channels A and B, respectively, of the Z80 PIO. They
include the 8 bits of channel I/O, GND (VCC on channel B), and J8
contains a cathode pin for the ULN2803A.

8

https://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_CABLES.pdf


J10 and J11: PIO Handshaking Headers
J10 and J11 are headers that break out PIO handshaking pins on
channels A and B, respectively.

JP1 and JP2: Expansion Bus Serial Jumpers
JP1 and JP2 connect the TX and RX pins of SIO channel B to the
TXB and RXB pins of the expansion header J1.

JP3: Clock Enable
JP3 disconnects or connects the system clock. It is useful for when
you need to drive the clock externally for testing or debugging.

JP4: CTC Channel 0 Trigger to Baud Clock
JP4 connects the trigger input pin of CTC channel 0 to the baud
clock. This allows the user to create software time delays by
dividing the clock signal.

JP5 and JP6: External Serial Power Jumpers
JP5 and JP6 connect the system VCC to the VCC pin of either TTL
serial port, allowing the port to either provide power to the system
or for the system to provide power to a serial device. Important:
leave these jumpers OPEN if receiving power from the 5V barrel
jack! Only connect one power source at a time!

9



Assembly
Below is a guide on how to assemble the ZTO-80 SBC, starting
with a list of components.

Components List
Image Qty. Description Reference

1 ZTO-80 SBC PCB N/A

1 Z84C00xxPEG Z80 CPU* U1

1 Z84C40xxPEG Z80 SIO/0* U2

1 28C256 ROM U3

1 Z84C20xxPEG Z80 PIO* U4

1 AS6C62256 RAM U5

1 Z84C30xxPEG Z80 CTC* U6

1 74HC139 RAM/ROM Decoding U7

10



1 ULN2803A Darlington Transistor
Array U8

1 74HC138 I/O Decoding U9

1 System Clock Oscillator X1

1 1.8432MHz Oscillator X2

1 2x20 Pin Header J1

1 PJ-102A Barrel Jack J3

1 1x9 Pin Header J4

2 2x5 Pin Header J7, J8

2 1x6 Pin Header J6, J9

9 1x2 Pin Header J2, J10, J11,
JP1-JP6

11



1 1x8 Pin Header J5

2 220 Ohm 0805 Resistor R3, R5

10 10k Ohm 0805 Resistor
R1, R2, R4,
R11-R15, R23,
R24

8 2.2k Ohm 0805 Resistor R6, R8-R10,
R17, R19-R21

4 100k Ohm 0805 Resistor R7, R16, R18,
R22

11 0.1uF 0805 Capacitor C1-C11

1 10uF 0805 Capacitor C12

1 6x6mm Tactile Pushbutton SW1

2 Red 3mm LED D1, D2

3 40-Pin DIP Socket U1, U2, U4

12



3 28-Pin DIP Socket U3, U5, U6

2 16-Pin DIP Socket U7, U9

1 18-Pin DIP Socket U8

*The “xx” in this Z80 Family product number represents the clock
rate of the part. Replace it with the correct clock rate when
searching for the part online. For example, if you replace the “xx”
with “08”, the part has a 8MHz clock rate. “10” would represent a
10MHz clock, etc. Be sure that the clock rate of your part is greater
than or equal to the speed of your system clock.

13



Tools
To build and use your SBC, you will only need a few basic tools:
● A Soldering iron and solder to solder your connections
● Rosin flux (preferably in the form of a flux pen or paste flux)

to help solder SMD components
● Helping Hands to hold your board off the table and hold

parts to the board
● Tweezers to allow you to hold SMD components
● Isopropyl Alcohol and a toothbrush to clean your board

after assembly
● A USB to 5.5mm Barrel Jack Cable or other 5v power source

to power your SBC
● A USB to 5V serial cable (TTL serial) to communicate with

the SBC
● Pin Header Jumpers to configure board signals. One is

required for operation

Assembly Steps
Follow these steps to assemble your ZTO-80 SBC:

Step 1: SMD Passives
SMD components may seem terrifying to beginners at soldering,
but with just a tiny bit of practice, they are very easy to work with.
If you’ve never worked with them before, I would recommend
trying an SMD soldering learning kit, which you can find for cheap
on Amazon.
I’ve made a video about how to solder SMD passives and you can
find it here. There are also plenty of other tutorials and different
methods that you can find with just a Google search.

14

https://www.amazon.com/Sparkfun-Electronics-4446819-FTDI-Cable/dp/B00DJBNDHE/ref=sr_1_3?crid=30GAIJCSPVN71&dchild=1&keywords=ftdi+cable+5v&qid=1598572800&s=electronics&sprefix=ftdi+cable%2Celectronics%2C180&sr=1-3
https://www.youtube.com/watch?v=08Y7ixNXsnI


It is important to match the component values to their respective
locations. These can be found in the components list table.
Both capacitors and resistors used here are not polarized and can
be rotated either direction.

Step 2: Headers
This is where the Helping Hands come into play. Because you can’t
bend the pins of the headers to hold them in place, you need to
find a different way to hold them straight. One way is to use some
Blu-Tack to hold the header in place. Another is to use one hand of
the Helping Hands to hold the board and the other hand to hold
the header in place. Once you solder one pin, you can continue as
normal.

Step 3: Sockets
Install the IC sockets into the reference locations found in the
components list. It is important to match the orientation of the
socket with what is indicated on the silkscreen of the PCB! To
hold the socket in place as you’re soldering so it doesn’t fall out,
you can bend down the pins in opposite corners after you insert it
into the board. Don’t install the actual ICs yet.

Step 4: Other Components
All the other components are straightforward to solder, and you
can bend the pins of most to hold them in place. When it comes
time to solder the LEDs, make sure that they are rotated the
correct way, with the flat side of the lens facing the square pad on
the PCB.

Step 5: Clean the Board
Using a toothbrush or other stiff brush, apply isopropyl alcohol and
clean any flux residue from the board. Flux looks like a clear to

15



yellow-brown liquid around solder joints. It’s difficult to remove,
but with the help of lab wipes you should be able to remove most
of it. Clean as much off as possible.

Step 6: ICs
Before installing your ICs, plug in your power source and make
sure the power LED lights.
For extra reassurance, test the input voltage to make sure it is
around 5 volts (+/- 0.5 volts).

You shouldn’t ever be directly soldering ICs to a board; if they fail or
if you need to use them somewhere else, it would be very difficult
to remove them. Instead we use sockets, which you have already
soldered to the board.
Insert the ICs into their proper sockets. Be sure they are not
inserted backwards. The pin 1 marking (usually a semicircle
engraving on one end of the IC) should match up with the pin 1
marking of both the socket and silkscreen (a similar semicircle
engraving on the socket and a marking on the silkscreen).
IC pins may be bent slightly outwards from the factory, which
could make it difficult to insert them into the sockets. To fix this,
slightly insert one set of legs into the socket, and then carefully
apply pressure to the IC perpendicular to the long side of the
socket until the other set of legs are above their holes in the
socket. Then, push down to insert all the legs.

Step 7: Install Jumpers
Pin header jumpers are used to configure and connect certain
signals on the SBC, such as connecting the SIO channel B to the
expansion header (JP1, JP2) or connecting the clock to the system

16



(JP3). Only one header must be jumpered for the system to
function, JP3, which connects the clock to the system.
Before continuing with testing the system, use a jumper to
connect the two pins of JP3.
If you intend to power the system through a serial port, you must
connect its respective power jumper, JP5 for channel A or JP6 for
channel B.

Final Checklist:
❏ All components are installed and there are no empty

footprints
❏ All SMD parts are in their proper places
❏ All pins have been soldered on all components
❏ There are no solder bridges between component legs
❏ Both LEDs are soldered in the correct orientation
❏ All sockets are soldered in the correct orientation
❏ All ICs are installed in the correct orientation
❏ All headers are exactly perpendicular to the board
❏ The clock enable header JP3 has been jumpered

17



Software Setup
Now that your ZTO-80 SBC is fully assembled, it’s time to hook it
up to a computer and use its built-in BASIC interpreter. However,
before this can happen, you need to flash the BASIC ROM file to
your ROM chip.
You can use either a dedicated programmer like this one or use an
Arduino as a programmer to flash the EEPROM. The steps after
step 1 below are for the linked dedicated programmer, the TL866.
You can follow guides for an Arduino programmer online.

Flashing BASIC
Step 1: Download the ROM file
To get the latest ROM file for the SBC, head over to the Releases
page on my GitHub and download the latest release of the
ROM32K.hex file.

18

https://www.amazon.com/dp/B07CQQBGVK
https://github.com/beneater/eeprom-programmer
https://github.com/jacobtohahn/ZTO-80/releases


Step 2: Open ROM32K in the programmer’s
software
Next, you’re going to want to open up the downloaded hex file in
your programmer’s software, which was either provided with the
programmer on a CD or could be downloaded online. Check the
included instruction manual for more details.
First, plug your programmer into your computer with the included
USB cable.
Select File>Open and navigate to the downloaded ROM.

19



Step 3: Choose your ROM IC
Now that you have your ROM file open, you need to tell the
programmer what chip we are programming.
Click on the “Select IC” button near the top left, and search for
“AT28C256”. Choose the one by Atmel with no “@” suffix in the list.

Step 4: Program the ROM
Now that your programmer knows what ROM chip it’s working
with, it’s time to program it.

20



In the top bar of the programming software, click the icon of the
IC with the letter “P” in the middle. In the menu that comes up,
use the “Location in Socket” diagram to properly insert your IC into
the programmer. Select “Program” and wait for the process to
finish. Then, you can click cancel, remove the IC from the
programmer, and plug it into the ZTO-80 SBC. You’re good to go!

21



Using your SBC with your PC
The ZTO-80 SBC communicates with your computer over a serial
connection. In order to see this connection, your computer needs
a software called a serial terminal emulator. I personally use
RealTerm because it is free and easy to use, and supports a variety
of serial formats. Other emulators include PuTTY, TeraTerm, ZTerm,
Termite, and dozens of others.

Due to the number of terminal emulators out there, I won’t be
giving a specific tutorial; I will only give the settings that you
should use with your software.

Step 1: Install your software
Use a search engine to find the download page of your preferred
serial terminal emulator and download the version for your
operating system.

Step 2: Connect your SBC
The ZTO-80 SBC uses serial channel A to communicate with a
computer. Thus, you should connect through the channel A TTL
serial header, J6, using a serial to USB cable. On your PC, be sure to
install the driver for whichever serial-to-USB chip your cable uses.
This info should be in the manual or the product listing.

Connect both the serial and power cables.

Step 3: Set up the port
Now that you’ve plugged in your SBC, you can set up the terminal
to communicate with it.

22



The first thing to do is to select the serial port that your SBC is
connected to. There should be a box to select a serial (COM) port in
your terminal emulator. Most computers these days have no
hardware serial ports built in, so there should only be one option to
choose from, which is guaranteed to be your serial-to-USB cable. If
it doesn’t show up, make sure you installed the driver correctly.

Step 4: Set up the baud rate
The next option is the baud rate. This option selects how fast serial
data is transmitted and received. The dropdown to select it is likely
located somewhere near where you selected your serial port.
There should be many values, but the one we’re looking for is
57600 baud. This is pre-programmed into the SBC, and both the
terminal and SBC must use the same baud rate.

Step 5: Set up handshaking
Lastly, you need to set the handshaking. This allows the SBC to tell
the computer if it is out of buffer space to store incoming data.
Find the option for “RTS/CTS” handshaking and set it to that. While
the SBC will work without handshaking, it won’t be able to handle
an overflow of data, which could cause problems in some cases.

After this, apply your settings if required.

23



Step 6: Test the SBC
With both your power and serial cables plugged in, press the reset
button on the SBC, located above the power LED.
If everything was set up correctly, you should see this text appear
in your terminal:

ZTO-80 By Jacob Hahn
Original Code Copyright Grant Searle
ZTO-80 BASIC v1.X.X Startup

Cold or warm start (C or W)?

Press C to start BASIC with a fresh boot. You will then see:

Memory top?

This is asking for the top of the RAM space that BASIC can use.
Press return to let it select the maximum amount of RAM.

Finally, you should see:

Z80 BASIC Ver 4.7b
Copyright (C) 1978 by Microsoft
32382 Bytes free
Ok

This means that your SBC is working!
The “Ok” is called the BASIC prompt, which lets you know that
BASIC is awaiting input from the user.
You may now enter BASIC commands. See the manual here for
more info on how to use BASIC.

24

https://github.com/feilipu/NASCOM_BASIC_4.7/blob/master/NASCOM_Basic_Manual.pdf


Troubleshooting
To troubleshoot your SBC, I recommend that you open an issue on
the project's issues page. Before doing so, try filling out the final
checklist to see if you may have missed anything simple.

If you’ve done all that, feel free to open an issue. Here’s a couple of
things to keep in mind when doing so:
● Search through the issues to make sure someone hasn’t

already asked the same question
● Filter results by the “good first issue” label to find common

beginner issues
● Use the “SBC Troubleshooting” issue template, which

automatically adds the “SBC troubleshooting” label

25

https://github.com/jacobtohahn/ZTO-80/issues?q=is%3Aissue


Contact
If you need to contact me, the best way is through email. The next
best way is to send me a message on Hackaday.io, although I can’t
guarantee I will see it. Please do not contact me about buying or
selling anything unless it has to do explicitly with the ZTO-80
project.

Email: jtohahn@gmail.com
Hackaday.io profile: hackaday.io/jtohahn

26

mailto:jtohahn@gmail.com
https://hackaday.io/jtohahn


License
If you’re not building off of this project, this doesn’t really apply to
you, but if you are, here are the license details you are required to
follow:

Copyright Jacob Hahn 2020.

This source describes Open Hardware and is licensed under the
CERN-OHLS v2. You may redistribute and modify this hardware
and make products using it under the terms of the CERN-OHL-S
v2 (https:/cern.ch/cern-ohl). This hardware is distributed WITHOUT
ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF
MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A
PARTICULAR PURPOSE. Please see the CERN-OHL-S v2 for
applicable conditions.
Source location: https://github.com/jacobtohahn/ZTO-80

This documentation is released under the Attribution-ShareAlike
4.0 International License and is copyright Jacob Hahn 2020. You
may use and share this documentation under the terms of the
license, found here:
https://creativecommons.org/licenses/by-sa/4.0/.

27

https://github.com/jacobtohahn/ZTO-80
https://creativecommons.org/licenses/by-sa/4.0/


History
8/14/2020 - Edition 1.0.
8/18/2020 - Edition 1.1, added license, added changes from SBC
revision, and fixed minor typos.
9/15/2020 - Edition 1.2, updated for SBC v3.1, fixed grammar/typos.
1/12/2021 - Edition 1.3, clarified and updated licence information.
3/17/2021 - Edition 1.4, fixed error in clock rate info, added jumpers
to tools list, added jumper section to assembly instructions,
reordered some assembly instructions.
5/18/2021 - Edition 1.5, added Open Source Hardware info to
introduction.

28


