SECURITYARTS

QUANTUM Communication Protocol

Protocol Version 1.0

© Copyright Security Arts

Revision history

SECURITYARTS

2019-11-20

Initial version

Vasyl Parovinchak

2019-12-18

A

Add Bitcoin Cash (BCH) support

Vasyl Parovinchak

© Copyright Security Arts

Contents

REVISTON NISTOIY .ottt e e e o4 st b et ettt e e e e s e e s bbb bbreeeeeeaeeas 2
A [o A e To [V] § o] [P O TP P PP TPPPPPPPPPPPN 5
P O =T o OO TPP TR 5
o T I = 1 1< o o] o A -\ Y= SRR PPUTPRTUPPRTR 6
3.1 USB interface and endpointS dESCHPLOISccuiiiiiiiitiiiiiiiaae e 6
3.2 USB HID repOrt AESCHIPLOL ..coiiiieiiiiiiiiieee ettt ettt e sttt et e e e e e e s s s e e eeeaeee s 7
TG T B TNV Tt o [1Yo 1= o S 7
3.4 RECOMMENUEALIONSuitieiiiiiite ettt e e ettt e e e et s e e ettt e e e e e s a e e r e neeeeeee s 7
A PACKEL LRYET ..ottt e e et e e e e e e e e 8
O = 100 = B 1Y =S 8
4.2 HENASNAKE.cci i 8
4.3 HaNdShaKe EXAmMPIE ... e e e e e e e e e e e e e et et e e e e e e e ettt e e bbb 9
4.4 Data tranSier EXAMPIE.....cci i 10
R I = 1 [T= ol A o] I = 1= PP PUPPPRR T 11
5.1 COMMANAS TIST ...ttt e e e et e e e e e e e 11
I 1= 1] = L LU L ST P P PP PPPPPPPTRPRN 12
IR B ST T4 0[SO PP PP PP PP PPPTPPP 13
5.4 RESIAM ...t e 13
B5.5 SEIBOOIMOUEttt ettt e e ettt e e e e e e ea e e s 14
B.B AGTAUSEN ...ttt e et e e e e ettt e e e e e e e e a s 14
5.7 L o 14
B8 GEBIWAIIELS ...ttt e e e e e e eaaaaas 15
5.9 GEIPASSWOIUS. ...ttt et e e e ettt ettt e e e s st e et et e e e e e e e ettt e e e e e e e es 16
5.10 GEIWANIEEDALA ...ttt e e e e e e e e e e e e e e e e e e s 16
5.11 GEtWaAllEtPUDKEY ... 17
5.12 AGAWAIIET ...t e ettt e st e e s bt e e e bt e e e st e e nnb e e e anaee e 18
5.13 DBIWAIIRTttt e e e et e e e e e e e e e e e e e e e e n 19
5.14 S (o ol I = 1 - Tt o] [T 19
5.15 GEtPASSWOIADALA ... eeeieeiiriiii ettt e st e e st e e e s a e e e s s e e e e e nnrree e e 20
5.16 AGUPASSWOITceeiieeeiiiiiitt ettt e e e ettt e e e e e e e e e e ettt e e e e e e e e e aanrnees 21
5.17 DEIPASSWOITcveeeeeieeeee ettt ettt e e e e e e e s st e e e e e e e et a e r e e e e e e e e e e 22
5.18 LT w2 USRS 22
5.19 7o [0 b2 O PR UP ST PUPPOUPPPTP 23
5.20 DIIZFA bbbttt b et bbb e 23
5.21 INCCONTIZEA <.ttt s s s e e et e e e e e e et e e e et e e e et eesen e nrrrae 24
5.22 SEECNIITZ2FA. .ottt ettt bbb 24
5.23 T2y ATt o [T UURRT PR 25
5.24 Y= ST 11 o [T 26

© Copyright Security Arts

5.25 O[T 141V 1=T0 o] oY TP PUUPPPP 26
5.26 2= o [U] o] 1= 27
5.27 BaACKUPBIOCKWIALE ...t e et e e e e e e e e 27
5.28 BACKUPBIOCKREAA ...ttt e e e e e e e e e e e e e e e e e e eeeeeeseeeeennennns 28
Appendix A. COMMANA EITOF COUBSciiiieii e eee et e e e e e e e e e e e et e e e e e et s e e e eeeaaareeeaeannnn s 29

© Copyright Security Arts

1 Introduction

This document provides Security Arts QUANTUM communication protocol specification and
API to help developers integrate QUANTUM to third party services.

2 Overview

The protocol consists of a set of commands that a client can perform on a server, where
QUANTUM acts as a server. Communication is always initiated by a client in a command-
response manner. Only one command could be executed in one moment of time.

The protocol consists of 3 logical layers:

e Transaction layer — highest layer. Each transaction consists of a command initiated by
the client and the response sent by the server. All transactions are atomic - response
should be received before next command could be sent.

e Packet layer — each command/response consists of one or more packets (64 bytes
each). Each packet consists of 5 or 7 bytes of packet layer data and 59 or 57 bytes of
payload (transaction layer data).

e Transport layer — USB HID is used as a transport layer to deliver packets between the
client and the server.

© Copyright Security Arts

ARTS

3 Transport layer

QUANTUM supports full-speed USB 2.0 (12Mbits/s) communication.
VID/PID: 0x1A92/0x2013 — for USB HID.

3.1 USB interface and endpoints descriptors

USB device descriptor

0 Device descriptor

¥ »

i) beduss 2.0

1) bDeviceClass Class defined at interface level

i) bDeviceProtocol None

i) bMaxPacketSize0 64

j/ idvendor 0x1A92

i) idProduct 0x2013

i) bedDevice 2.0

i) iManufacturer 1 "SecurityArts"

i) iProduct 2 "Quantum”

i) iserialNumber 3
USB interface descriptor

€ Interface descriptor ¥ o»
) binterfaceNumber 0

i) bAlternateSetting 0

i) bNumEndpeints 2

1) binterfaceClass Human Interface Device

(Find out more online)

QUANTUM implements 2 (one IN and one OUT) endpoints for USB communication with 64
bytes packet size:

o Endpoint descriptor »

«

j/ bEndpointAddress 1IN

‘i/ bmAttributes. TransferType Interrupt

i) wMaxPacketSize 64 bytes

i) binterval 2 frames (2 ms)

o Endpoint descriptor »

«

i) bEndpointAddress 1 0UT

i) bmaAttributes. TransferType Interrupt

1) wMaxPacketSize 64 bytes

j/ bInterval 2 frames (2 ms)

© Copyright Security Arts

3.2

3.3

3.4

ARTS

USB HID report descriptor

QUANTUM implements two "raw" reports, which basically map directly to the IN and OUT
endpoints.

const BYTE HID ReportDescriptor[USB_HID HID REPCRT_DESC_SIZE] =

: 1

This way driver-less communication could be implemented in almost every modern operating
system that supports the USB HID (Windows, Linux, Mac OS, Android and others).

Device discovery

Device discovery could be done using corresponding VID/PID. If more than one QUANTUM
instance is connected to PC, an additional discovery procedure could be implemented using the
serial number from the USB device descriptor.

The serial number is 24 symbols hex string and is unique for every QUANTUM device.

Recommendations

Security Arts QuantumManager is an open source multiplatform desktop application for the
QUANTUM device and could be used as a reference.

It is developed using the Electron JS framework and uses node-hid library for USB
communication.

usbhid.js is JS code that implements all three layers (Transaction, packet and transport)
required to communicate with QUANTUM.

© Copyright Security Arts

https://github.com/SecurityArts/QuantumManager
https://electronjs.org/
https://github.com/node-hid/node-hid
https://github.com/SecurityArts/QuantumManager/blob/master/app/js/usbhid.js

SECURITYARTS

4 Packet layer

The packet layer is a logical “channel” that is used to split long transactions into 64 bytes
packets and deliver them in the correct order.

4.1 Packet types
There are two types of packets: initialization and continuation packets.
Each transaction starts with one initialization packet followed by continuation packets.

If the transaction is 57 bytes long or less - it fits into one initialization packet and no more
continuation packets are required.

Initialization packet format:
CID Channel ID
CMD Command
SIZE_HI | DATA size HI byte
SIZE_LO | DATA size LO byte
.57 DATA Payload data (transaction data)

~N| o] U M O
I S

CID — channel ID is a logical channel ID and is generated during the handshake phase
described below.

CMD - 0x86 for a handshake, 0x83 for data transfer.
SIZE_HI and SIZE_LO - payload data size.

DATA - payload data. If payload data size < 57 bytes, the packet should be aligned to 64 bytes
with random data (all 0x00 or OxFF are allowed).

Continuation packet format:

4 CID Channel ID
1 SEQ Packet sequence: 0x00...0x7F
5 1..59 DATA Payload data (transaction data)

CID — channel ID, same as in initialization packet.
SEQ - sequence number, starting from 0 and incremented by 1 in each packet.
DATA — payload data.

Maximum payload size for one transaction is 7609 bytes: one initialization packet with 57 bytes
of data + 128 continuation packets with 59 bytes each.

4.2 Handshake

Before the data transfer, the client should initiate the handshake phase with server to generate
CID for further data transfers. Handshake request packet is the first packet that should be sent
by the client to create logical channel.

© Copyright Security Arts

SECURITYARTS

Handshake request packet is an initialization packet with specific constant CID, CMD, SIZE and
DATA fields.

Client handshake request packet:

CID OxXFFFFFFFF Handshake CID

CMD 0x86 Handshake command
SIZE_HI | 0x00 DATA size = 8 bytes
SIZE_LO | 0x08

DATA XX ... XX NONCE - 8 random bytes

Server handshake response packet:

CID OXFFFFFFFF Handshake CID

CMD 0x86 Handshake command

SIZE_HI | 0x00 DATA size = 0x11 bytes

SIZE_LO | 0x11

DATA Client Response SERVER Response Data - 0x11 bytes

SERVER Response Data description:

NONCE | 8 bytes NONCE from handshake request
CID 4 bytes CID for further communication
DATA 5 bytes Could be ignored

Now client and the server have CID (channel ID) value that should be used for all further
packets for data transfer.

4.3 Handshake example
Raw data client request captured by USB sniffer:
Data
Q02 2y 304 50 e T 8 9 Al B Gl Dl ELF 0123456789ABCDEF
o: RN 56 BBEE D DS LC OD E0 7B F2 02 00 .cveeeennnns S
16: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...evevevcncanane
32: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...ievevvncnncnns
48: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...ceveececcnnne
B - Handshake CID.

86 — Handshake command.
BBI88 - Handshake data size.
FD D9 AC 0D EO 7B F8 08 — handshake NONCE randomly generated by client.

00 ... 00 — packet alignment to 64 bytes.

© Copyright Security Arts

Raw data server response captured by USB sniffer:

I - Handshake CID.
86 — Handshake command.

BBl - Handshake response data size.

Data
I Sl S O, S, Y - S T Ol D E F 0123456789BBCLEF
0: ENEEEREERE 56 MO FD DS AC OD E0 78 F& 08 B8 .cuveeeeecn. §58
16: DS5'SE68 02 01 00 01 01 00 00 00 00 00 00 00 00 [hosssssvesesennsnini
32: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | w.cuvveueeanaenn
48: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 & .uuuveveeeaesenns

FD D9 AC 0D EO 7B F8 08 — handshake NONCE. Same as in client request.

38 D5 5B 68 — CID generated by server, for further communication.

SECURITYARTS

hidinitChannel(timeout) function from usbhid.js is used for handshake procedure.

4.4 Data transfer example

Server command, raw data captured by USB sniffer:

Data

38 D5 5B 68 — Packet CID.

88 - Data transfer command.

BEA - Payload size.

7B 22 ... 30 7D - Payload (Transaction data).

Client response, raw data, initialisation packet:

v
1 o
o
n @
w
¢
»

NN ooy

© Copyright Security Arts

Data
0:
16:
32
48:
Data
0:
16:
32:
48:
Data
QI 23S 0123456 789ABCDEF
0: 38 D5 SB 68 @@ &3 g.[nl ated":
168 74 72 2C 20
32 6572 6F 6E
48 6F 6F 74 56 65 72
2030 455 D EGE 0123456789ABCDEF
5B 68 @@ z2C 3R 20 22 £.[nE "Name®: "
20 22 41 64 61 6C 73 ¥
20 57 61 75 6E 74 -
20 30 2C 20 72 64 73 {1
20 30 45 S 0123456789ABCDEF
[8.0l

https://github.com/SecurityArts/QuantumManager/blob/master/app/js/usbhid.js

5

5.1

SECURITYARTS

q85] 3337 33 3222 D 00 00 00 00 00 00 00 00 00
POE0E - Packet sequence.

Transaction layer

Transaction layer is the highest layer. Each transaction consists of a command initiated by the
client and response sent by the server. Commands and the responses are JSON objects in text
format.

Command (request) always consists of two mandatory fields “Command”and “CmdId”, and
some specific parameters.

“Cmdld” - unique random value (4 bytes unsigned integer), for each transaction.

Response consists of “Cmdld” (same value as in request) and “Command” field — if command
executed OK, or “Error”field — if an error occurs. See Appendix A for error codes and
descriptions.

Only 2 commands could be executed on unauthenticated device (before user enter PIN code):
‘GetStatus” - to check PIN status.

“‘SetTime” — to set current time.

All other commands will return an error.

Some commands, for security reasons, require the user’s interaction — device OK button press
to confirm command.

Commands list

GetStatus No No Get device status
SetTime No No Set real clock time
Restart Yes No Software reset
SetBootMode Yes | No Enter boot mode
AddUser Yes | Yes Add new user

InitRnd Yes | Yes Init random seed
BackupKey Yes | Yes Set backup key
BackupBlockRead | Yes | No Read user memory block
BackupBlockWrite | Yes | No Write user memory block
GetWallets Yes No Get wallets list
GetPasswords Yes | No Get passwords list
GetWalletData Yes | Yes Get wallet data
GetWalletPubKey | Yes | No Get wallet public key (XRP only)
AddWallet Yes | No Add new wallet
DelWallet Yes | Yes Delete wallet
SignTransaction Yes | Yes Sign transaction
GetPasswordData | Yes | Yes Get password data

Add password Yes | No Add new password

© Copyright Security Arts

DelPassword Yes | Yes Delete password
Get2FA Yes | Yes Get 2FA value
Add2FA Yes | No Add 2FA
Del2FA Yes No Delete 2FA
IncCntr2FA Yes | Yes Increment 2FA counter (U2F/HOTP only)
SetCntr2FA Yes | Yes Set value for 2FA counter (U2F/HOTP only)
GetSettings Yes | No Get device settings
SetSetting Yes | Yes Set device settings
ClearMemory Yes | Yes Clear user memory
5.2 GetStatus

This command is used to get device status and general information.

Request example:

{*Command”: “GetStatus”, “CmdId” 1234567890}

Response example:

{*Command”: “GetStatus”’,

“‘Cmdld” 1234567890,
“Product”: “Quantum’,
“Mode”: “‘pc”,

“PinOK”: true,

“‘Empty’”: false,
“Activated”: true,
“FirmwareVersion”: 1.2,
“BootVersion”: 1.0,
“Name”: “User 17,
“Admin’: true,
“WalletsCount”: 10,
“PasswordsCount”: 5,
“‘MaxWallets”: 100,
“MaxPasswords”: 100,

“RndInited”: false,

“Serial”: “00112233445566778899AABB”

}

Where:

“Product” — always “Quantum” for QUANTUM device.

“Mode” — always “pc” for device command mode.

“PinOk” — true if user entered PIN code.

“Empty” — true if user memory is empty.

© Copyright Security Arts

ARTS

5.3

5.4

ARTS

“Activated” — true if device is activated.

“FirmwareVersion” — 1.2 current firmware version.
“BootVersion”— 1.0 current bootloader version.

“Name” - “User 1”, current user name.

“Admin” — true if user have administrator privileges.
“WalletsCount” — 10, number of wallets for current user.
“PasswordsCount”— 5, number of passwords for current user.
“MaxWallets” — 100, max possible wallets for one user.
“MaxPasswords”— 100, max possible passwords for one user.
“RndInited” — true if random seed initialized.

“Serial”— 24 symbols, HEX string unique serial number for current QUANTUM instance.

Possible error codes: none

SetTime

This command is used to set device real- time clock. The absolute value of the current time is
used to calculate 2FA TOTP code. Since QUANTUM does not have a built-in battery this value is
not saved after disconnecting the device. It’s is required only if 2FA TOTP is going to be used.

Request example:
{*Command”: “SetTime”, “CmdId”: 1234567890,
“Time”: 1570882288

}

Where:

“Time” — 1570882288 Unix time (Epoch time, POSIX time), number of seconds that have
elapsed since the Unix epoch, that is the time 00:00:00 UTC on 1 January 1970.

Response example:
{*Command”: “SetTime”, “Cmdld” 1234567890}

Possible error codes: 2

Restart

This command is used to soft reset device. The device is restarted 100ms after the response is
sent.

Request example:
{*Command”: “Restart”, “CmdIld” 1234567890}

© Copyright Security Arts

https://en.wikipedia.org/wiki/Second
https://en.wikipedia.org/wiki/Coordinated_Universal_Time

5.5

5.6

5.7

ARTS

Response example:
{*Command”: “Restart”, “CmdId” 1234567890}

Possible error codes: 3

SetBootMode

Switch device to boot mode for firmware update. The device is restarted in boot mode 100ms
after the response is sent.

Request example:
{*Command”: “SetBootMode”, “CmdId™ 1234567890}

Response example:
{*Command”: “SetBootMode”, “Cmdld™ 1234567890}

Possible error codes: 3

AddUser

This command is used to add a new user to the device and enter the PIN code for that user.
After the command is sent, the device LCD will start blinking, prompting the user to enter the PIN
code using device buttons and LCD.

Request example:
{*Command”: “AddUser”, “Name”: “New User”, “Admin”: true, “Cmdld”: 1234567890}

Where:
“‘Name” — name for new user to be created.

“Admin” — true/false, whether new user will have admin privileges or not. New user will get admin
privileges only if it is created from admin user or user memory is empty.

Response example:
{*Command”: “AddUser”, “Cmdld”: 1234567890} — command executed ok.
{*Error”: "New user not added”, “Cmdld” 1234567890, “ErrCode”: 3} — error executing command.

Possible error codes: 3, 201, 202

InitRnd

This command is used to initialize internal random seed value using random data from user input
(device buttons press). This command should be called once if any of the commands, that

© Copyright Security Arts

SECURITYARTS

require random numbers are going to be used: SignTransaction, AddWallet/AddPassword (with
Rnd parameter).

If SignTransaction or AddWallet/AddPassword (with Rnd parameter) command is executed
before InitRnd, an error is return.

GetStatus command could be used to verify whether random seed is initialized or not, before
executing other commands. RndInited parameter is true if random seed is initialised.

After InitRnd command is sent, the device LCD will start blinking, prompting a user to press
different buttons on the device.

Request example:
{*Command”: “InitRnd”, “CmdId” 1234567890}

Response example:
{*Command”; “InitRnd”, “CmdId™ 1234567890}

Possible error codes: 3

5.8 GetWallets

This command is used to get list of wallets.

Request example:
{*Command”: “GetWallets”, “CmdId”; 1234567890}

Response example:
{*Command” “GetWallets”, “Cmdld”: 1234567890, “‘Max”: 100, “Wallets”: [

{*"Name”: “Wallet 17, “Type”: “BTC”, “Addr”: “miYiX7VK8nzE9HYNRF1FfctbaxqQiTKVAE”,
“Index”: 1, “Options”: {Testnet”: true}},

{*"Name”: “Wallet 27, “Type”: “LTC”, “Addr’: mrN2h73EaB9KtPrHZuBTEUy1FdBtpNBkgy”,
“Index”: 2, “Options”: {*Testnet”: false}},

{"Name”: “Wallet 3", “Type”: “XRP”, “Addr’: INQhsFdBe4rNTeYytXK3FFHkGUYwodaUq4”,
“Index”: 3, “Options”: {*Testnet”: false}}]

Where:
"Max” — maximum number of wallets (same value as in GetStatus command).

“Wallets” — an array of objects(wallets).

Each wallet object has:

“Name” - string name.

“Type”— coin type. Possible values:“BTC”, “LTC”, “ETH”, “‘BCH”, “DASH”, “DOGE”, “XRP”, “XSN”
“Addr” — Wallet address.

© Copyright Security Arts

ARTS

“Index” — wallets index, to be used in commands (SignTransaction, GetWalletData, DelWallet) to
address specific wallet.

“Options” — additional options for each wallet, where: “Testnet”— true if wallet address is for
testnet, and false for mainnet.

Possible error codes: 3

59 GetPasswords

This command is used to get list of passwords.

Request example:
{*Command”: “GetPasswords”, “Cmdld”: 1234567890}

Response example:
{*Command”: “GetPasswords”, “Cmdld”: 1234567890, “Max”: 100, “Passwords”: [
{"Name”: “Password 17, “TwoFA”: “‘NONE”, “Index”: 1},
{"Name”: “Password 27, “TwoFA”: ‘HOTP”, “Index”: 2},
{"Name”: “Password 3", “TwoFA”: “U2F”, “Index”: 3},
{"Name”: “Password 47, “TwoFA”: “TOTP”, “Index”: 4}]

Where:
"Max” — maximum number of passwords (same value as in GetStatus command).

“Passwords”— an array of objects(passwords).

Each password object has:
“Name” — string name.
“TwoFA”— 2FA type. Possible values: “NONE”, “HOTP”, “TOTP”, “U2F”

“Index” — password index, to be used in commands (DelPassword, Get2FA, Del2FA, Inc2FA) to
address specific password.

Possible error codes: 3

5.10 GetWalletData

This command is used to get wallet private key and specific data.

After the command is sent, the device LCD will start blinking, prompting the user to press OK or
CANCEL buttons on the device to confirm the command.

Request example:
{*Command”: “GetWalletData”, “Index”: 1, “CmdId™ 1234567890}

© Copyright Security Arts

SECURITYARTS

Where:

“Index” — wallet index to get data for.

Response example:

{*Command”: “GetWalletData”, “Cmdld”: 1234567890,

‘Name”: “Wallet 17,

“Type”: “BTC?,

“Addr’: “miYiX7VK8nzE9HYNRF1FfctbaxqQIiTKVAE”,

“Key”: “6B9FC20241EA036B6B33493DE19FCAFAE04900964A9FD8D288EB6EBBO6BESF2D”,

“Seed”: *high wrap letter long parent remember proud hard digital artefact verify volume afraid
leopard float fault sugar nephew depart talent race elbow lake pattern”,

“WIF”: “cRBUfFKVR0JgPs9S5ajckraiRWP58BPBTp2dz6 UFUKpFXMQqVL81n”,
“Testnet”: true,

“Compressed”: true,

“SegWit’: false

}

Where:

“Name” - wallet name (same as in GetWallets command).

“Type”— coin type (same as in GetWallets command).

“Addr” — wallet address (same as in GetWallets command).

"Key’/’Seed’/"WIF’/"Secret” — private key in different forms.
“Key”, “Seed” and “WIF” - for BTC, LTC, BCH, DASH, DOGE, XSN, ETH.
‘Key”, “Seed” and “Secret” - for XRP.

“Testnet” - true if wallet address is for testnet, and false for mainnet.

“Compressed” — true if wallet address is generated from compressed public key (for BTC, LTC,
DASH, DOGE, XSN, ETH, and could be ignored now).

“SegWit” — true if wallet address is SegWit (for BTC, LTC, DASH, DOGE, XSN and could be
ignored now).

“Curve” — for XRP only (always “SECP256K1”. Currently only one XRP curve is supported).
“PriveKey” — for XRP only.
If true — “Seed” and “Secret” are empty, and “Key” — wallet private key in HEX form.

If false — “Seed”, "Key” and “Secret” are XRP account private key.

Possible error codes: 2, 3, 100, 101

5.11 GetWalletPubKey
This command is used to get XRP wallet public key.

XRP public key is required to generate a transaction.

© Copyright Security Arts

SECURITYARTS

Request example:
{*Command”: “GetWalletPubKey”, “Index”: 3, “CmdIld” 1234567890}
Where:

“Index” — wallet index to get public key for.

Response example:

{*Command”: “GetWalletPubKey”, “CmdId” 1234567890,

“Name”: “Wallet 17,

“Type”: “XRP”,

“PubKey”: “6BOFC20241EA036B6B33493DE19FCAFAE04900964A9FD8D288EBGE
BBO68E5F2D”

}

Where:
“Name” - wallet name (same as in GetWallets command).
“Type”— coin type (same as in GetWallets command).

"PubKey” — wallet public key in HEX form.

Possible error codes: 2, 3, 400

5.12 AddWallet

This command is used to add/generate a new wallet.

After command is executed, use GetWallets commands to refresh wallets list.

Request example (private key is generated inside of the device):
{*Command”: “AddWallet”,

‘Name”: “Wallet 17,

“Type”: “BTC”,

“Key”

“Rnd’: true,

“Cmdlid” 1234567890

}

Request example (add new wallet with specified private key):

{*Command”: “AddWallet”,

“Name”: “Wallet 17,

“Type”: “BTC’,

‘Key”: “995EEA5F7065223A2022585250222C202241646472223A2022724E51687346647,
“‘Cmdld” 1234567890

}

© Copyright Security Arts

ARTS

Where:
‘Name” — wallet name.
“Type”— coin type (“BTC”, “LTC”, “ETH”, “BCH”, “DASH”, “DOGE”, “XRP”, “XSN").

“Key” — wallet private key. could be any type HEX/Seed/WIF/Secret, device will autodetect key
type. Could be empty if “Rnd” is true.

“Rnd” — if true — generate random private key inside for new wallet.

If “Key” is specified, “Rnd” could be omitted.

Response example:
{*Command”: “AddWallet”, “Cmdlid” 1234567890}

Possible error codes: 2, 3, 5, 200, 400, 401, 403, 404, 405, 406

5.13 DelWallet
This command is used to delete the wallet.

After command is sent, the device LCD will start blinking, prompting the user to press OK or
CANCEL buttons on the device to confirm command.

After the command is executed, use GetWallets commands to refresh wallets list.

Request example:
{*Command”: “DelWallet”, “Index”: 3, “Cmdld” 1234567890}

Where:

‘Index” — wallet index to be deleted.

Response example:
{*Command”: “DelWallet”, “CmdIid” 1234567890}

Possible error codes: 2, 3, 100, 101, 402

5.14 SignTransaction
This command is used to sign the cryptocurrency transaction.
After the command is sent, the device LCD will start blinking, prompting the user to press OK or

CANCEL buttons on the device to confirm the command. Transaction information (amount to
send, destination address) is displayed on LCD.

For bitcoin-like coins (BTC, BCH, LTC, DASH, DOGE, XSN) each input (UTXO) should be sign

by the separate command (request/response). The device will prompt for user interaction only
once, when the first input is sent, but will keep a track of the sequence of inputs inside.

© Copyright Security Arts

ARTS

Request example:

{*Command”: “SignTransaction”,

“Tx”: “0100000004BC4286F3...88AC0000000001000000”,
“Input”: “1/4”,

“Curve”: “SECP256K1”,

“Index”: 3,

“Amount” 100000000,

“Cmdld”: 1234567890}

Where:
“Index” — wallet index.
“Tx”— HEX string, properly formed transaction to be signed.

“Input” — “input number/total number of inputs”. For example, “1/4” — first input of 4 inputs. ETH
and XRP always have 1 input — “1/1”.

“Curve” — cryptographic curve type (for XRP). Currently only “SECP256K1”is supported.

“Amount”— (for BCH only). Amount of satoshi received by current UTXO (current input to be
signed).

Response example:

{*Command”: “SignTransaction”,
“Signature” “6B4830450221...88D6CC12”,
“Cmdld™ 1234567890}

Where:

“Signature” — HEX string, transaction signature for given input (UTXO).

Possible error codes: 2, 3, 100, 101, 407, 408

5.15 GetPasswordData

This command is used to get password specific data.

After the command is sent, device LCD will start blinking, prompting the user to press OK or
CANCEL buttons on the device to confirm the command.

Request example:
{*Command”: “GetPasswordData”, “Index”: 1, “Cmdld” 1234567890}
Where:

“Index” — password index to get data for.

Response example:
{*Command”: “GetPasswordData”, “CmdIld™ 1234567890,

© Copyright Security Arts

5.16

“Name”: “Password 17,
“Password” “user\tpassword\t\r”,
“TwoFA”: “NONE”

}

Where:

“Name” — password name (same as in GetPasswords command).
“Password”— password data.

“TwoFA” — 2FA type (“NONE”, “U2F”, “HOTP”, “TOTP").

Possible error codes: 2, 3, 100, 101

AddPassword

This command is used to add/generate a new password.

After command is executed, use GetPasswords commands to refresh passwords list.

Request example (random password is generated inside):
{*Command”: “AddPassword”,

‘Name”: “Password 17,

“Rnd”: “10”,

“Symbols”: 7,

“CmdIid™ 1234567890

}

Request example (add new specified password):
{*Command”: “AddPassword”,

“Name”: “Password 17,

“Password” “user password or any random text”,

“‘Cmdld”: 1234567890
}

Where:

“Name” — password name.

“Rnd” — random password length. If this field is present — new random password will be

generated inside.

“Symbols” — Decimal value, where every bit represents symbols set to be used in password:

1%t bit - "abcdefghijkimnopgrstuvwxyz".

2" pit - "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
3" bit - "0123456789".

4" bit — special symbols "~!1@#$%"&*()-+_=[|{}".

© Copyright Security Arts

ARTS

ARTS

For example, 7 (bits 1, 2 and 3 are set) — password will be generated using digits, small
and capital letters, without special symbols.

“Password” — Password data.

Response example:
{*Command”: “AddPassword”, “CmdId” 1234567890}

Possible error codes: 2, 3, 5, 200, 500, 501, 503, 504, 505, 506, 507

5.17 DelPassword

This command is used to delete the password.

After the command is sent, the device LCD will start blinking, prompting the user to press OK or
CANCEL buttons on the device to confirm the command.

After the command is executed, use GetPasswords commands to refresh the passwords list.

Request example:
{"Command”: ‘DelPassword”, “Index”: 3, “Cmdld” 1234567890}

Where:

“Index” — password index to be deleted.

Response example:
{*Command”: “DelPassword”, “CmdId” 1234567890}

Possible error codes: 2, 3, 100, 101, 502

5.18 Get2FA

This command is used to get the 2FA code.

After the command is sent, device LCD will start blinking, prompting the user to press OK or
CANCEL buttons on the device to confirm the command.

Request example:

{*Command”: “Get2FA”, “Index”: 1,
“Time”: 1572536428,

“Cmdld” 1234567890

}

Where:

“Index” — password index to get 2FA for.

© Copyright Security Arts

ARTS

“Time” — current Unix time, same format as in SetTime command (for TOTP only).

Response example:

{*Command”: “Get2FA”, “*Cmdld” 1234567890,
“Code”: “056109”,

“ValidTime”: 28,

“Counter”: 1

}

Where:
“‘Code” — 2FA code.

“ValidTime” - 2FA code valid period (in seconds: 0 - 29). After this period 2FA code should be
recalculated (for TOTP only).

“Counter”— HOTP counter that was used to calculate 2FA code.

Possible error codes: 2, 3, 100, 101, 508, 509

519 Add2FA

This command is used to add 2FA to password.

Request example (for HOTP or TOTP type):
{*Command”: “Add2FA”,

‘Index” 1,

“Type™ “TOTP?,

‘Key”: “aaabbbcccddd”

}

Where:
“Index” — password index to add 2FA for.

“Type”— 2FA type (“HOTP”, “TOTP”, “U2F”).
“Key”— 2FA key (for HOTP/TOTP only).

Response example:
{*Command”: “Add2FA”, “CmdId™ 1234567890}

Possible error codes: 2, 3, 5, 200, 508, 510, 512

5.20 Del2FA

This command is used to delete password 2FA.

© Copyright Security Arts

ARTS

After the command is sent, device LCD will start blinking, prompting the user to press OK or
CANCEL buttons on the device to confirm the command.

After the command is executed, use GetPasswords commands to refresh the passwords list.

Request example:
{*Command”; “Del2FA”, “Index”: 1, “CmdId™ 1234567890}

Where:

“Index” — password index to delete 2FA for.

Response example:
{*Command”: “Del2FA”, “CmdId” 1234567890}

Possible error codes: 2, 3, 100, 101, 511

5.21 IncCntr2FA

This command is used to increment counter for U2F/HOTP 2FA.

Request example:
{*Command”: IncCntr2FA”, “Index”: 1, “Cmdld”: 1234567890}

Where:

“Index” — password index to increment 2FA for.

Response example:
{*Command”: “IncCntr2FA”, “Cmdld” 1234567890
“Code”: “983245,

“Counter”™ 2

}

Where:
“Counter” — incremented counter value.

“‘Code”— 2FA code.

Possible error codes: 2, 3, 100, 101, 508, 509, 513

5.22 SetCntr2FA

This command is used to set counter value for U2F/HOTP 2FA.

© Copyright Security Arts

SECURITYARTS

Request example:
{*Command”: “SetCntr2FA”, “Index”: 1, “Counter”: 10, “CmdId” 1234567890}

Where:
“Index” — password index to set 2FA counter for.

“Counter” — new counter value.

Response example:

{*Command”: “SetCntr2FA”, “Cmdld” 1234567890
“Code”: “983245”,

“Counter”: 2

}

Where:
“Counter”— New counter value.
“Code” - 2FA code.

Possible error codes: 2, 3, 100, 101, 508, 509, 514

5.23 GetSettings

This command is used to read device settings.

Request example:
{*Command”: “GetSettings”, “CmdId” 1234567890}

Response example:

{*Command”: “GetSettings”, “Cmdld” 1234567890
“Lang”: 0,

“DefaultMode”: 1,

“AutoLogout”: 0,

“PrintDelay”: 0,

“ScreenSaver”: 60,

“Rotate”: 0
}

Where:

“Lang” - device menu language:
0 — English.
1 — Ukrainian.

“‘DefaultMode” — device default mode after start:

© Copyright Security Arts

ARTS

0 — MENU mode.
1 - PC mode.
“AutoLogout” — device auto-logout timeout (seconds).

“PrintDelay” — additional delay (milliseconds) after every symbol printed over USB for MENU
mode.

“ScreenSaver”— LCD screen saver timeout (seconds).
‘Rotate” — rotate device Ul for left hand use:
0 — no rotation.

1 — Rotate.

Possible error codes: 2, 3

5.24 SetSettings

This command is used to write device settings.

After the command is sent, the device LCD will start blinking, prompting the user to press OK or
CANCEL buttons on the device to confirm the command.

All the fields are the same as in the GetSettings command.

Request example:

{*Command”: “SetSettings”, “Cmdld”: 1234567890,
“Lang”: 0,

‘DefaultMode”: 1,

“AutoLogout’: 0,

“PrintDelay”: 0,

“ScreenSaver”: 60,

“Rotate”: 0
}

Response example:
{*Command”: “SetSettings”, “Cmdld”: 1234567890}

Possible error codes: 2, 3, 100, 101, 601, 602, 603, 604, 605, 606

5.25 ClearMemory
This command is used to clear all user's memory.
After the command is sent, the device LCD will start blinking, prompting the user to press OK or

CANCEL buttons on the device to confirm the command. Current user needs to have admin
privileges to execute this command.

© Copyright Security Arts

ARTS

Request example:
{*Command”: “ClearMemory”, “CmdId” 1234567890}

Response example:
{*Command”: “ClearMemory”, “CmdId” 1234567890}

Possible error codes: 2, 3, 4, 100, 101, 600

5.26 BackupKey

This command is used to set crypto key for backup/restore user memory. After the command is
sent, the device LCD will start blinking, prompting the user to enter the crypto key using device
buttons and LCD.

Backup/restore should be done by BackupBlockRead/BackupBlockWrite commands, by
reading/writing one block in each command, starting from address 0, till user memory size
(“Size” parameter, returned by this command).

Request example:
{*Command”: “‘BackupKey”, “Cmdld”: 1234567890}

Response example:
{*Command”: “BackupKey”, “Size”: 131584, “BlockSize”: 512, “Cmdld” 1234567890}

Where:
“Size” — user memory size.

“BlockSize” — maximum block size.

Possible error codes: 3, 300

5.27 BackupBlockWrite

This command is used to write one block from backup file to device user memory.

Request example:

{*Command”: “BackupBlockWrite”,
“Addr’: 0,

“Size”: 512,

“Data”: “FAOSF3...FD43FE’,
“Cmdld”: 1234567890}

Where:

“Size” — block size.

© Copyright Security Arts

SECURITYARTS

“Addr”— block address.

“Data” — user memory data, hex string.

Response example:
{*Command”: “BackupBlockWrite”, “CmdId” 1234567890}

Possible error codes: 2, 3, 4, 300, 301, 302

5.28 BackupBlockRead

This command is used to read block of user memory from device.

Request example:
{"Command”: “‘BackupBlockRead”, “Addr”: 0, “Size”: 512, “CmdId”: 1234567890}

Where:
“Size” — block size.
“Addr” — block address.

Response example:
{*Command”: “BackupBlockRead”,
“Data”: “FAO5F3...FD43FE”,

“CmdIld” 1234567890}

Where:

“Data” — user memory data, hex string.

Possible error codes: 2, 3, 300

© Copyright Security Arts

Appendix A. Command error codes

1 - Unknown command
2 - Invalid parameters
3 - PIN code required
4 - No admin privileges

5 - Rnd seed not initialized

100 - User denied access

101 - User not confirmed

200 - User PIN not set
201 - Invalid name
202 — Entered PIN mismatch

300 — Backup crypto key not set
301 — Backup crypto key error

302 - Backup file format error

400 - Invalid wallet type

401 - Add wallet error

402 - Delete wallet error

403 - Invalid wallet key

404 - Wallet name already exist
405 - Invalid name

406 - Maximum wallets used
407 - Transaction format error

408 - Transaction not allowed

500 - Invalid password

501 - Add password error

502 - Delete password error

503 - Special symbols should be escaped
504 - Invalid password length

505 - Password name already exist
506 - Invalid name

507 - Maximum passwords used
508 - Invalid 2FA type

509 - Can't get 2FA code

510 - Add 2FA error

© Copyright Security Arts

511 - Delete 2FA error

512 - Invalid 2FA key length

513 - Increment 2FA counter error
514 - Set 2FA counter error

600 - Memory not clean

601 - Language parameter error
602 - Rotate parameter error

603 - Default mode parameter error
604 - Auto logout parameter error
605 - Screen saver parameter error

606 - Print delay parameter error

© Copyright Security Arts

