
Safe-power Raspberry Pi UPS datasheet

TG Tronx 30/06/2019

Technical data
max current while not charging Lipo cell 2 mA
max current charging Lipo cell 250 mA
Temperature range 0 ◦C - 50 ◦C
rechargeable Battery Lipo 3.7V
time to shutdown after power failure 10s

Table 1: max ratings

Dimensions

The UPS comes in HAT form, specified by https://github.com/raspberrypi/hats but does not have
the eeprom.

Figure 1: safe-power installed on Raspberry 2

safe-power Raspberry Pi UPS Page 1

Figure 2: shield specification

safe-power Raspberry Pi UPS Page 2

onboard Lipo charging circuit

The TP4056 is a complete constant-current/constant-voltage linear charger for single cell lithium-
ion batteries.
ABSOLUTE MAXIMUM RATINGS
· Preset 4.2V Charge Voltage
·Input Supply Voltage(V CC):-0.3V 8V
·BAT Short-Circuit Duration:Continuous
·BAT Pin Current:200mA
TP4056 Other features include current monitor, under voltage lockout, automatic recharge and
two status LED to indicate charge termination and the presence of an input voltage.

LED codes:

Steady green – power has been applied, Raspberry boots
Blinking green 2 seconds – normal operation power ok
Blinking red fast – power failure detected
Steady red – shutdown initiated (manual or after power failure)
Blinking red 2 seconds – power failure, Raspberry is shutdown
Blinking red and green 2 seconds – system in shutdown After manual shutdown by button
Blinking red and green alternating 5 times – Safe-power Microcontroller boots

safe-power Raspberry Pi UPS Page 3

shutdown operation

Save this script in /bin and execute it via crontab at boot time.

@reboot /bin/safe-power.py &

1
#!/usr/bin/env python

3 #script to shutdown the raspberry by safe-power raspberry UPS

#save this script as root under /bin/safe-power.py

5 #add this script AS LAST LINE of root’s crontab in the following way

@reboot /bin/safe-power.py &

7 # important!! dont forget the "&" in the end!!

#the script will be started in the background at reboot

9 #and safe power will be operational

import RPi.GPIO as GPIO

11 GPIO.setmode(GPIO.BCM)

import os

13 import time

GPIO 11 = pin23 set up as input. It is pulled up to stop false signals

15 GPIO.setup(11, GPIO.IN, pull_up_down=GPIO.PUD_UP)

now the program will do nothing until the shutdown signal on pin 23

17 # gets LOW.

#During this waiting time, your raspberry is not

19 #wasting resources by polling the pin

21 try:

GPIO.wait_for_edge(11, GPIO.FALLING)

23
warn all logged users of the shutdown event

25 os.system("wall shutdown by UPS")

#now the system will shut down

27 os.system("sudo poweroff")

#except if this script will be cancelled by the user explicitely

29 except KeyboardInterrupt:

GPIO.cleanup() # clean up GPIO on CTRL+C exit

31 GPIO.cleanup() # clean up GPIO on normal exit

safe–power.py

Further installation instructions on http://safe-power.appspot.com/setup

safe-power Raspberry Pi UPS Page 4

