

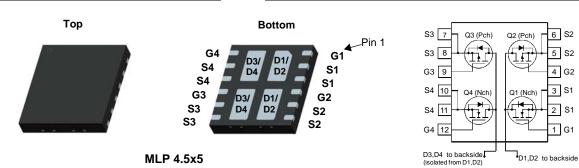
FDMQ8203

GreenBridge[™] Series of High-Efficiency Bridge Rectifiers Dual N-Channel and Dual P-Channel PowerTrench[®] MOSFET N-Channel: 100 V, 6 A, 110 m Ω P-Channel: -80 V, -6 A, 190 m Ω

Features

Q1/Q4: N-Channel

- Max $r_{DS(on)}$ = 110 m Ω at V_{GS} = 10 V, I_D = 3 A
- Max $r_{DS(on)}$ = 175 m Ω at V_{GS} = 6 V, I_D = 2.4 A
- Q2/Q3: P-Channel
- Max r_{DS(on)} = 190 mΩ at V_{GS} = -10 V, I_D = -2.3 A
- Max r_{DS(on)} = 235 mΩ at V_{GS} = -4.5 V, I_D = -2.1 A
- Substantial efficiency benefit in PD solutions


RoHS Compliant

This guad mosfet solution provides ten-fold improvement in power dissipation over diode bridge.

Application

High-Efficiency Bridge Rectifiers

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter				Q1/Q4	Q2/Q3	Units	
V _{DS}	Drain to Source	Voltage			100	-80	V	
V _{GS}	Gate to Source	Voltage			±20	±20	V	
	Drain Current	-Continuous (Package limited)	T _C = 25 °C		6	-6		
		-Continuous (Silicon limited)	T _C = 25 °C		10	-10	A	
D		-Continuous	T _A = 25 °C	(Note 1a)	3.4	-2.6		
		-Pulsed			12	-10	_	
D	Power Dissipati	on for Single Operation	T _C = 25 °C		22	37	10/	
P _D	Power Dissipation for Dual Operation $T_A = 25 \text{ °C}$ (Note 1a)		2	.5	W			
T _J , T _{STG}	Operating and S	Storage Junction Temperature Rang	ge		-55 to	+150	°C	

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	50	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	160	0/11

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMQ8203	FDMQ8203	MLP4.5x5	13 "	12 mm	3000 units

2 S1

1 G1

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Chara	octeristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$ $I_D = -250 \ \mu A, \ V_{GS} = 0 \ V$	Q1/Q4 Q2/Q3	100 -80			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C $I_D = -250 \ \mu$ A, referenced to 25 °C	Q1/Q4 Q2/Q3		72 -79		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 80 V$, $V_{GS} = 0 V$ $V_{DS} = -64 V$, $V_{GS} = 0 V$	Q1/Q4 Q2/Q3			1 -1	μΑ μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	Q1/Q4 Q2/Q3			±100 ±100	nA nA
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$ $V_{GS} = V_{DS}, I_D = -250 \ \mu A$	Q1/Q4 Q2/Q3	2 -1	3 -1.6	4 -3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C $I_D = -250 \ \mu$ A, referenced to 25 °C	Q1/Q4 Q2/Q3		-8 5		mV/°C
<u> </u>					05	110	
	Drain to Course On Desinter		Q1/Q4		85 118 147	175 191	
rDS(on)	Drain to Source On Resistance	$V_{GS} = 6 V, I_D = 2.4 A$	Q2/Q3		118	175	mΩ

Dynamic Characteristics

C _{iss}	Input Capacitance	Q1/Q4: V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHZ	Q1/Q4 Q2/Q3	158 639	210 850	pF
C _{oss}	Output Capacitance	Q2/Q3:	Q1/Q4 Q2/Q3	41 46	55 65	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = -40 V, V _{GS} = 0 V, f = 1 MHZ	Q1/Q4 Q2/Q3	2.6 24	5 40	pF

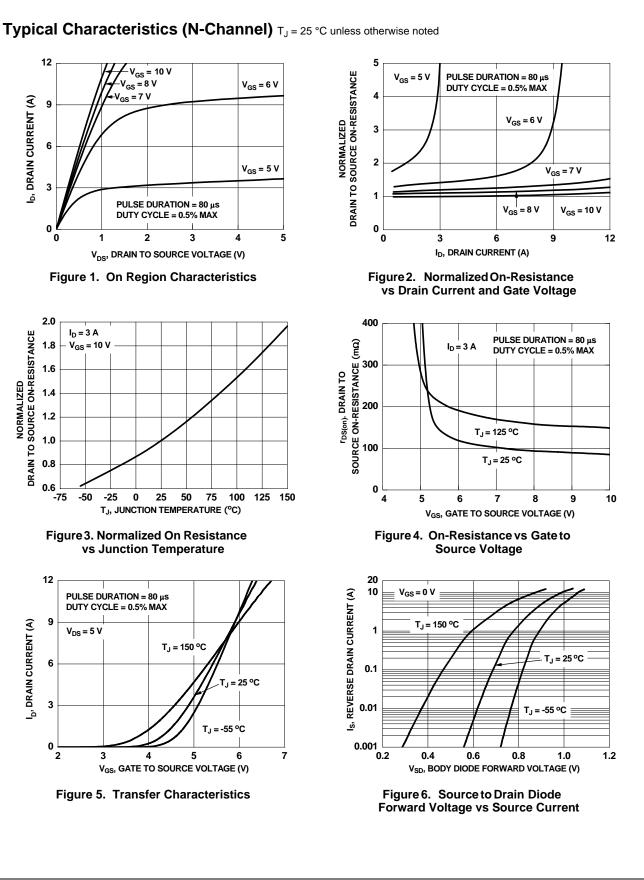
Switching Characteristics

t _{d(on)}	Turn-On Delay Time	Q1/Q4:	Q1/Q4 Q2/Q3	3.8 4.7	10 10	ns
t _r	Rise Time	$V_{\text{DD}} = 50 \text{ V}, \text{ I}_{\text{D}} = 3 \text{ A},$ $V_{\text{GS}} = 10 \text{ V}, \text{ R}_{\text{GEN}} = 6 \Omega$	Q1/Q4 Q2/Q3	1.3 2.8	10 10	ns
t _{d(off)}	Turn-Off Delay Time	Q2/Q3:	Q1/Q4 Q2/Q3	7.5 22	15 35	ns
t _f	Fall Time	V_{DD} = -40 V, I _D = -2.3 A, V _{GS} = -10 V, R _{GEN} = 6 Ω	Q1/Q4 Q2/Q3	1.9 2.7	10 10	ns
Qg	Total Gate Charge	VGS = 0 V to 10 V VGS = 0 V to -10 V Q1/Q4:	Q1/Q4 Q2/Q3	2.9 13	5 19	nC
Qg	Total Gate Charge	$ \begin{array}{c} VGS = 0 \ V \ to \ 5 \ V \\ VGS = 0 \ V \ to \ -4.5 \ V \\ I_D = 3 \ A \end{array} \\ \end{array} $	Q1/Q4 Q2/Q3	1.6 6.4	3 10	nC
Q _{gs}	Gate to Source Gate Charge	Q2/Q3: V _{DD} = -40 V,	Q1/Q4 Q2/Q3	0.8 1.6		nC
Q _{gd}	Gate to Drain "Miller" Charge	$I_{\rm D} = -2.3 {\rm A}$	Q1/Q4 Q2/Q3	0.8 2.6		nC

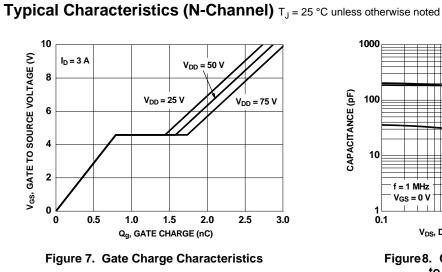
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-So	urce Diode Characteristics						
V _{SD}	Source to Drain Diode Forward Voltage				0.86 -0.82	1.3 -1.3	V
t _{rr}	Reverse Recovery Time	Q1/Q4: I _F = 3 A, di/dt = 100 A/μs	Q1/Q4 Q2/Q3		32 26	52 42	ns
Q _{rr}	Reverse Recovery Charge	Q2/Q3: I _F = -2.3 A, di/dt = 100 A/μs	Q1/Q4 Q2/Q3		21 26	34 42	nC

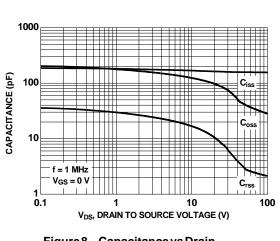
Notes:

1: $R_{0,LA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{0,LC}$ is guaranteed by design while $R_{0,CA}$ is determined by the user's board design.



a. 50 °C/W when mounted on a 1 in² pad of 2 oz copper, the board designed Q1+Q3 or Q2+Q4.




b. 160 °C/W when mounted on a minimum pad of 2 oz copper, the board designed Q1+Q3 or Q2+Q4.

2: Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

FDMQ8203 Dual N-Channel and Dual P-Channel PowerTrench[®] MOSFET

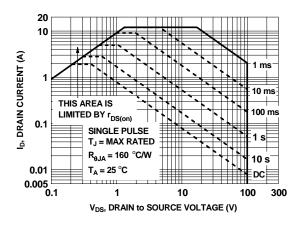
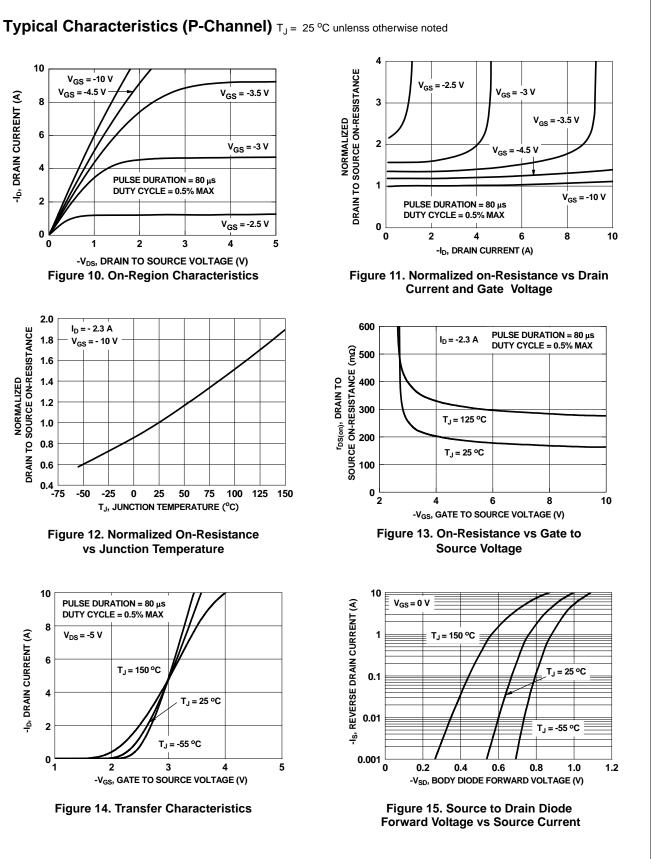



Figure 9. Forward Bias Safe Operating Area

10

8

6

4

2

0

0

2.0

1.8

1.6

1.4 1.2

1.0 0.8

0.6 0.4 └--75

10

8

6

4

2

0 L 1

-I_D, DRAIN CURRENT (A)

DRAIN TO SOURCE ON-RESISTANCE

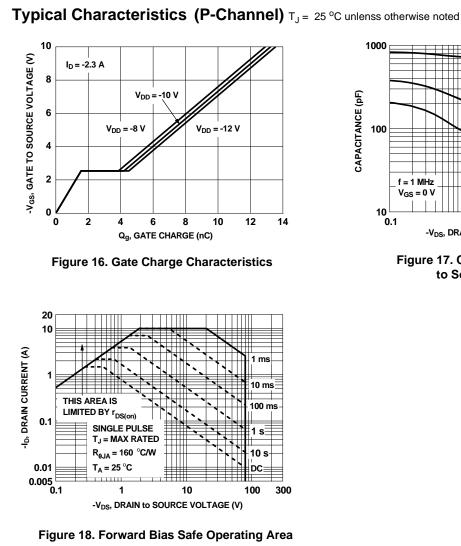
NORMALIZED

-I_b, DRAIN CURRENT (A)

V_{GS} = -10 V

1

I_D = - 2.3 Å


-50 -25

 $V_{DS} = -5 V$

2

V_{GS} = - 10 V

V_{GS} = -4.5 V

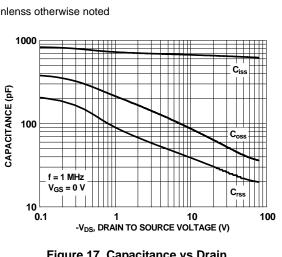
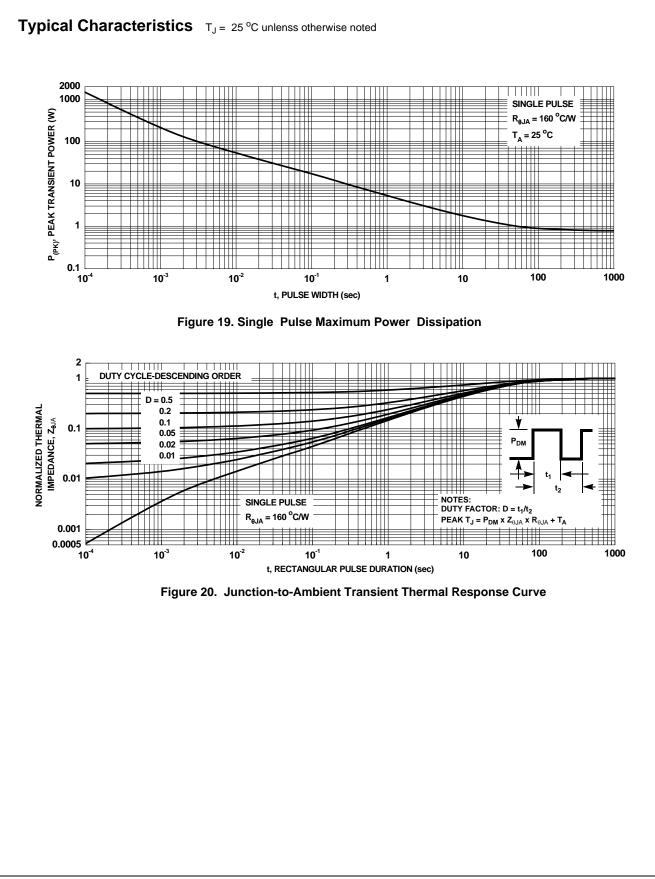
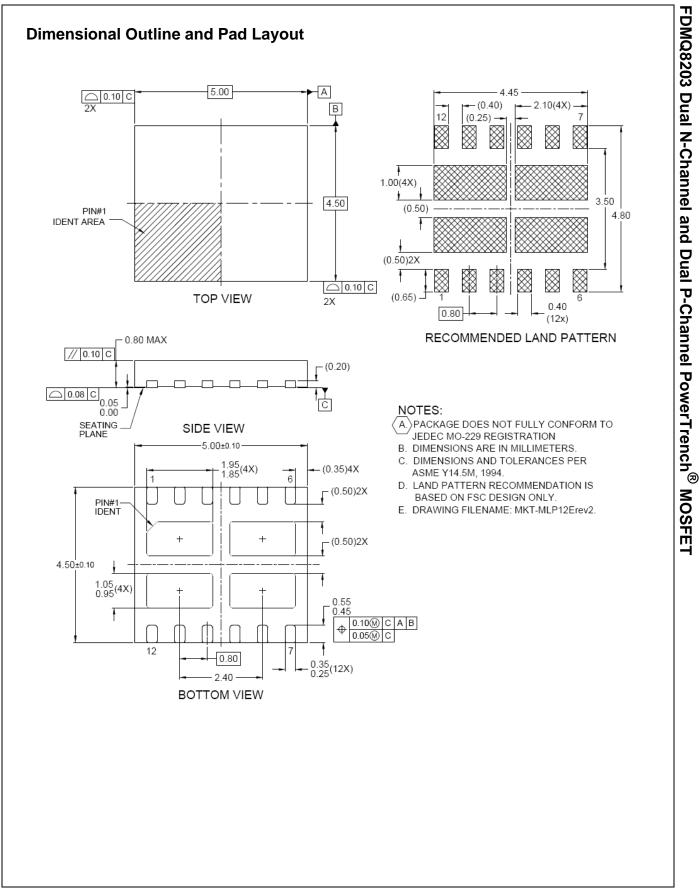




Figure 17. Capacitance vs Drain to Source Voltage

FDMQ8203 Dual N-Channel and Dual P-Channel PowerTrench[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative