
Digirule 2U User Manual
23 November 2020

Description
The Digirule 2U is an Open Source Hardware programmable 8-bit binary computer built into a 20
cm (8”) PCB ruler.

Full details can be found here: bradsprojects.com/digirule2

Features and Specifications
Microchip PIC18F46K20 8-bit microcontroller
USB-C interface with FTDI FT234XD virtual-COM port controller
8-bit address bus
8-bit data bus
256 bytes program/data RAM (4 bytes reserved for registers)
Eight non-volatile memory files to back up your programs
54 instructions
Adjustable instruction execution interval (speed)
64-level stack
Eight Address LEDs, eight Data LEDs, Run and Stop LEDs
Eight Data input buttons
File Load and Save buttons
Address Goto, Previous and Next buttons
Data Store button
CPU Run/Stop button
Built-in Debug Monitor
Built-in Firmware Updater
Expansion Port with UART, Pin I/O and ICSP interfaces
Powered by 3-volt CR2032 coin cell battery
Instruction set reference chart
Dimensions: 210 mm (8.27") L x 40 mm (1.57") W x 7 mm (0.28") H
Weight: 37 grams (1.3 oz) including battery

Overview

Front Side

The front of the Digirule 2U contains the battery, power switch, microcontroller, buttons, LEDs,
USB-C port and Expansion Port.

Rear Side

The rear of the Digirule 2U contains a chart of the instruction set and reserved registers, and a
Help section. It also features an Open Source Hardware logo and a QR-Code which will take you
to the Digirule 2 webpage. The Expansion Port is also accessible. And finally, a dedication to our
good friend Olivier Lecluse, who was a great help to us in the development of the Digirule 2U.

History
The Digirule 2U is the third edition of the Digirule 2 series of portable computers. The first was the
Digirule 2, while the second was the Digirule 2A. The Digirule 2U represents a significant hardware
and software upgrade compared to the previous versions.

The Digirule 2U differs from its predecessor (the Digirule 2A) in the following ways:

PIC18F46K20 microcontroller (Digirule 2A uses PIC18F45K20 microcontroller)
Microcontroller clock speed is 16 MHz (Digirule 2A microcontroller clock speed is 8 MHz)
USB-C and UART communications interfaces
Expansion Port
54 instructions, including multiply and divide (Digirule 2A has 35 instructions)
COPYxx instructions now update the Zero status flag
ADDxx and SUBxx instructions now include the Carry status flag in their calculation

RANDA instruction has been significantly improved
CPU performance has been significantly improved
CPU stack depth is 64 (Digirule 2A stack depth is 4)
Built-in Debug Monitor
Built-in Firmware Updater
Supported by full-featured adr2 assembler and udr2 firmware updater

Conventions Used in This Manual
Most numbers are presented in both hexadecimal and binary, using the following notation:

0xA5 (10100101)

Some small numbers (for example bit numbers) are presented in decimal and binary:

7 (00000111)

Operation

Getting Started

It is important that care be taken when installing the CR2032 battery. First make sure the battery's
positive side is facing up (away from the Digirule 2U) and the battery is slotted under the metal tab
at the front of the holder. Then press down on the opposite end of the battery until it snaps
under the plastic retaining tabs. Failure to follow this procedure may result in damage to the
battery holder.

The power switch turns the Digirule 2U on or off when using the battery as the power source. The
Digirule 2U is always on when connected to a USB power source, regardless of the power switch
setting.

When powered on, the Digirule 2U performs a brief LED animation so you can verify all of the
LEDs are functioning. RAM is cleared and the CPU is reset. The Digirule 2U is now ready for use.

Action Steps

Clear RAM Press and hold the Load button, then press the Prev button.

Edit RAM Use the Data, Goto, Prev, Next and Store buttons.

Load RAM from a non-
volatile memory file

Press and hold the Load button, then press a Data button.

Save RAM to a non-
volatile memory file

Press and hold the Save button, then press a Data button.

Load RAM from the
Comm Port

Press and hold the Load button, then press the Next button.
The Digirule 2U enters Comm Load mode.

Save RAM to the Comm
Port

Press and hold the Save button, then press the Next button.
The Digirule 2U enters Comm Save mode.

Reset the CPU
Press and hold the Load button, then press the Run/Stop
button.

Start the CPU Press the Run/Stop button. The Digirule 2U enters Run mode.

Start the Debug Monitor
Press and hold the Load button, then press the Store button.
The Digirule 2U enters Monitor mode.

Action Steps

Provide input to the program Press any Data button(s).

Turn on or off the Address
LEDs

Press the Goto button.

Stop the CPU
Press the Run/Stop button. The Digirule 2U enters Stop
mode.

Modes of Operation

The Digirule 2U is in one of the following five modes of operation at any point in time:

Stop Mode

This is the mode from which most of the Digirule 2U functions are accessed. In this mode, the
Stop LED is on and the CPU is stopped, and you can:

The Address LEDs display the contents of the Program Counter. The Data LEDs display the
contents of RAM addressed by the Program Counter.

Run Mode

In this mode, the Run LED is on and the CPU is executing instructions, and you can:

LED Meaning

D7 Listening status (blinking)

D6-D3

D2 Record type error

D1 Checksum error

D0 Non-hex character error

LED Meaning

D7

D6 Talking status (blinking)

D5-D0

Unless turned off, the Address LEDs display the contents of the Program Counter (if bit 2 of the
Status Register is clear) or the contents of the Address LEDs Register (if bit 2 of the Status Register
is set). The Data LEDs display the contents of the Data LEDs Register.

Comm Load Mode

In this mode, RAM is loaded with data (in Intel Hex format) from the Comm Port. The Address LEDs
display a progress bar. The Data LEDs display status as follows:

When the data has been fully received, the Listening status LED stops blinking. If an error
occurred, the error LED starts blinking, and you need to press any Data button to clear the error
condition. The Digirule 2U then automatically resets the CPU, sets the Program Counter to the
entry point of the program, and enters Stop mode.

This mode can be cancelled by pressing the Run/Stop button, and the Digirule 2U enters Stop
mode.

Note: The Comm Port configuration is 9600 baud, 8 data bits, no parity, 1 stop bit.

Comm Save Mode

In this mode, RAM is saved (in Intel Hex format) to the Comm Port. The Address LEDs display a
progress bar. The Data LEDs display status as follows:

When the data has been fully transmitted, the Talking status LED stops blinking, and the Digirule
2U enters Stop mode.

This mode can be cancelled by pressing the Run/Stop button, and the Digirule 2U enters Stop
mode.

Note: The Comm Port configuration is 9600 baud, 8 data bits, no parity, 1 stop bit.

Monitor Mode

In this mode, the built-in Debug Monitor is active on the Comm Port. See the Using the Debug
Monitor section for information on how to use the monitor.

This mode can be cancelled by pressing the Run/Stop button, and the Digirule 2U enters Stop
mode.

Entering a Program

With the Digirule 2U in Stop mode, you can enter a program into RAM using the eight Data
buttons and the four Program window buttons. The Program Counter contains the address of
(points to) the RAM location currently being edited, and is displayed on the Address LEDs. The
contents of the addressed RAM location is displayed on the Data LEDs. Refer to the handy chart
on the rear of the Digirule 2U to find opcode values for specific instructions.

Tip: To quickly fill all of RAM with zeros, press and hold the Load button, then press the Prev
button.

To modify the value displayed on the Data LEDs, press the button below the particular LED whose
state you want to change. If the LED is off, pressing the corresponding button turns it on, and
vice-versa.

Tip: To quickly fill all of the Data LEDs with zeros, press and hold the Data 0 button for one
second. To fill all of the Data LEDs with ones, press and hold the Data 7 button for one
second.

To set the Program Counter (RAM address), first enter the address on the Data LEDs, then press
the Goto button to transfer it to the Program Counter (and the Address LEDs). The contents of
the RAM location addressed by the Program Counter is displayed on the Data LEDs. Alternatively,
you can use the Prev and Next buttons to decrement or increment the Program Counter by one
with each press of the button.

Once the Program Counter is set to the desired address, you can then modify the contents of that
RAM location by first editing the value displayed on the Data LEDs, then pressing the Store button
to write that value to RAM. The Program Counter is automatically incremented to the next
address. Use the Prev and Next buttons as desired to review any changes. Repeat this process
to enter the rest of your program, then you can run it.

Running and Stopping a Program

With the Digirule 2U in Stop mode, first make sure the Program Counter (displayed on the
Address LEDs) contains the start address (typically 0x00) of the program you want to run, then
press the Run/Stop button to start the program. The Stop LED turns off and the Run LED turns
on, indicating the Digirule 2U is now in Run mode.

Tip: You can start a program at any address you want. In fact, you can have multiple
programs loaded in RAM at the same time, at different addresses. For example, you could
have one program at addresses 0x00 to 0x3F and another at addresses 0x40 to 0x7F. To run
the first program, set the Program Counter to 0x00 (00000000), then press the Run/Stop

button. To run the second program, set the Program Counter to 0x40 (01000000), then press
the Run/Stop button.

While in Run mode, the Address LEDs display (by default) the constantly changing address in the
Program Counter as the CPU executes instructions. In some cases, this can be a distraction. You
can hide this display if desired by pressing the Goto button. To show the display again, press the
Goto button again.

To stop a running program, press the Run/Stop button. The Run LED turns off and the Stop LED
turns on, indicating the Digirule 2U is now in Stop mode. The internal state of the CPU and all
memory and registers is retained. The Program Counter is left pointing to the next instruction to
be executed. To resume execution of the program from that point, press the Run/Stop button
again. If instead you want to restart the program from the beginning, reset the CPU by first
pressing and holding the Load button, then press the Run/Stop button. Then release both
buttons, and press the Run/Stop button again to start the program (at address 0x00).

Tip: In some cases you can safely restart a program by simply setting the Program Counter
back to the start address and pressing the Run/Stop button. However this method does not
reset certain CPU resources back to their default states, so your program may not function
as intended. If your program uses the SPEED instruction, the CALL and RETURN
instructions (i.e. the stack), or the PIN instructions, you may want to reset the CPU instead.

The CPU will automatically halt and the Digirule 2U enters Stop mode in the following
circumstances:

A stack overflow occurs (CALL instruction is executed with full stack)
A stack underflow occurs (RETURN instruction is executed with empty stack)
A DIV instruction is executed with zero divisor
A HALT instruction is executed
An invalid instruction opcode is fetched

Saving and Loading a Program

With the Digirule 2U in Stop mode, you can save the current contents of RAM to any of eight non-
volatile memory files. This will retain your program(s) even if the battery is removed. To do this,
first press and hold the Save button. The Data LEDs will animate back and forth. Then press one
of the eight Data buttons to save the current contents of RAM to that particular file. Then release
both buttons.

To load RAM from a previously saved file, first press and hold the Load button. The Data LEDs will
animate back and forth. Then press one of the eight Data buttons to load RAM from that
particular file. Then release both buttons. The CPU is automatically reset, and the Program
Counter is set to 0x00. If that is the correct start address for your program, simply press the
Run/Stop button to start it.

Tip: To copy the contents of one file to another, first load RAM from the desired source file,
then save it to the desired destination file.

The Digirule 2U comes with eight sample programs preinstalled in each of the eight files.

File Program Description

0 Hello World Displays "Hello World!" on the terminal using ASCII art.

1
Prime
Numbers

Calculates prime numbers to 255 and displays them on the terminal.

2
Base
Trainer

A game that teaches binary-to-hexadecimal conversion.

3
Logic
Trainer

A game that teaches logic gate functions.

4 Mastermind A game where you guess a random 4-digit number.

5
24-bit
Up/Down
Counter

Demonstrates multi-byte addition and subtraction. The upper two
bytes of the counter are visible on the Address and Data LEDs (the
lower byte is not visible). Press any Data button to reverse the
direction of the counter.

6 Echo
Comm loopback. Any data received from the terminal is transmitted
back to the terminal, and displayed on the Data LEDs.

7 Kill the Bit

A game that starts with a single Data LED shifting right to left. The
player needs to press any of the eight Data buttons in an attempt to
turn off the lit LED. Pressing a button when the LED above it is on
turns it off. However pressing a button when the LED is off turns it
on. The goal is to turn off all of the LEDs.

Tip: When you save your own program to a particular file, the sample program previously
stored there is deleted. However it can be restored later if desired by downloading the
appropriate sample program hex file from the Digirule 2U website, downloading it to RAM
via the Comm Port, and saving it to that file again.

Memory-Mapped Registers
The Digirule 2U has four memory locations reserved for special purpose registers. These are
located at the very top of the RAM address space.

Register Address Access Contents

Status
Register

0xFC
(11111100)

Read/Write CPU status flags. See following table.

Button
Register

0xFD
(11111101)

Read Only
Data buttons status. For each bit, if that bit is
set, the corresponding button is pressed.

Address
LEDs
Register

0xFE
(11111110)

Read/Write
Displayed on the Address LEDs while in Run
mode and only if bit 2 of the Status Register
is set.

Data LEDs
Register

0xFF
(11111111)

Read/Write
Displayed on the Data LEDs while in Run
mode.

Bit Flag Description

0 Z (Zero) If set, the previous instruction produced a zero result.

1 C (Carry) If set, the previous instruction produced a carry or borrow.

2

Show
Address
LEDs
Register

If set, the Address LEDs display the contents of the Address LEDs
Register while in Run mode. If clear, the Address LEDs display the
contents of the Program Counter.

3-
7

 Undefined

Opcode Instruction Description Bytes Flags

0x00 HALT Stop the CPU 1

0x01 NOP No operation 1

0x02 SPEED Set instruction execution interval 2

0x03 INITSP Initialise Stack Pointer 1

0x04 COPYLA Copy literal to Accumulator 2 Z

0x05 COPYLR Copy literal to RAM 3 Z

0x06 COPYLI Copy literal to RAM indirect 3 Z

Status Register

Instruction Set Summary

0x07 COPYAR Copy Accumulator to RAM 2 Z

0x08 COPYAI Copy Accumulator to RAM indirect 2 Z

0x09 COPYRA Copy RAM to Accumulator 2 Z

0x0A COPYRR Copy RAM to RAM 3 Z

0x0B COPYRI Copy RAM to RAM indirect 3 Z

0x0C COPYIA Copy RAM indirect to Accumulator 2 Z

0x0D COPYIR Copy RAM indirect to RAM 3 Z

0x0E COPYII Copy RAM indirect to RAM indirect 3 Z

0x0F SWAPRA Swap RAM with Accumulator 2

0x10 SWAPRR Swap RAM with RAM 3

0x11 ADDLA Add literal to Accumulator 2 Z, C

0x12 ADDRA Add RAM to Accumulator 2 Z, C

0x13 SUBLA Subtract literal from Accumulator 2 Z, C

0x14 SUBRA Subtract RAM from Accumulator 2 Z, C

0x15 MUL Multiply RAM with RAM 3 Z, C

0x16 DIV Divide RAM with RAM 3 Z, C

0x17 ANDLA AND literal with Accumulator 2 Z

0x18 ANDRA AND RAM with Accumulator 2 Z

0x19 ORLA OR literal with Accumulator 2 Z

0x1A ORRA OR RAM with Accumulator 2 Z

0x1B XORLA Exclusive-OR literal with Accumulator 2 Z

0x1C XORRA Exclusive-OR RAM with Accumulator 2 Z

0x1D DECR Decrement RAM 2 Z

0x1E INCR Increment RAM 2 Z

0x1F DECRJZ Decrement RAM, jump if zero 2 Z

0x20 INCRJZ Increment RAM, jump if zero 2 Z

0x21 SHIFTRL Rotate RAM left through Carry 2 C

0x22 SHIFTRR Rotate RAM right through Carry 2 C

0x23 BCLR Bit clear RAM 3

0x24 BSET Bit set RAM 3

0x25 BCHG Bit change RAM 3

0x26 BTSTSC Bit test RAM, skip if clear 3

0x27 BTSTSS Bit test RAM, skip if set 3

0x28 JUMP Jump to address 2

0x29 JUMPI Jump to address indirect 2

0x2A CALL Call subroutine 2

0x2B CALLI Call subroutine indirect 2

0x2C RETURN Return from subroutine 1

0x2D RETLA Return from subroutine with value 2

0x2E ADDRPC Add RAM to Program Counter 2

0x2F RANDA Pseudo-random number to Accumulator 1

0xC0 COMOUT Copy Accumulator to Comm Port 1

0xC1 COMIN Copy Comm Port to Accumulator 1

0xC2 COMRDY Check if Comm Port data available 1 Z

0xC4 PINOUT Copy Accumulator to Expansion Port pin(s) 2

0xC5 PININ Copy Expansion Port pin(s) to Accumulator 2 Z

0xC6 PINDIR Configure Expansion Port pin(s) direction 2

Instruction Set Detail

0x00 HALT

Description: Stop the CPU.
Usage: HALT
Program Bytes Used: 1
Status Flags Affected: None

Example:

Address Hex
(Binary)

Instruction
Machine Code
Hex (Binary)

Remarks

0x00
(00000000)

HALT 0x00 (00000000)

0x01
(00000001)

JUMP 0x28 (00101000)
The Program Counter points here
after HALT is executed

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) NOP 0x01 (00000001)

Value mSec Value mSec Value mSec Value mSec

0x00 0 0x40 52 0x80 125 0xC0 250

0x01 1 0x41 53 0x81 127 0xC1 253

Tip: When the HALT instruction is executed, the Digirule 2U enters Stop mode, and any data
written to the Address and/or Data LEDs registers by your program will no longer be
displayed. If you want to effectively halt your program but keep your data displayed, use a
JUMP * instruction instead.

Tip: It is sometimes helpful to follow a HALT instruction with a JUMP instruction to a restart
point in your program, in case the Run/Stop button is pressed to resume execution.

0x01 NOP

Description: Performs no operation.
Usage: NOP
Program Bytes Used: 1
Status Flags Affected: None

Example:

0x02 SPEED

Description: Set the time interval at which the CPU executes instructions. The higher the value,
the longer the interval (lower the rate).
Usage: SPEED value
Program Bytes Used: 2
Status Flags Affected: None

The following table shows the possible instruction argument values and the associated instruction
execution intervals. For example, using a value of 0x80 (10000000) will result in the CPU executing
one instruction every 125 milliseconds, or 8 instructions per second. Omitting this instruction, or
using a value of 0x00 (00000000), will result in the CPU executing instructions at the maximum
possible rate.

0x02 2 0x42 54 0x82 128 0xC2 256

0x03 3 0x43 55 0x83 130 0xC3 259

0x04 3 0x44 56 0x84 131 0xC4 262

0x05 4 0x45 57 0x85 133 0xC5 265

0x06 5 0x46 58 0x86 134 0xC6 268

0x07 5 0x47 59 0x87 136 0xC7 271

0x08 6 0x48 60 0x88 137 0xC8 275

0x09 7 0x49 61 0x89 139 0xC9 278

0x0A 8 0x4A 62 0x8A 140 0xCA 281

0x0B 8 0x4B 63 0x8B 142 0xCB 285

0x0C 9 0x4C 64 0x8C 143 0xCC 288

0x0D 10 0x4D 65 0x8D 145 0xCD 291

0x0E 11 0x4E 66 0x8E 146 0xCE 295

0x0F 11 0x4F 67 0x8F 148 0xCF 299

0x10 12 0x50 68 0x90 150 0xD0 302

0x11 13 0x51 69 0x91 151 0xD1 306

0x12 14 0x52 70 0x92 153 0xD2 310

0x13 14 0x53 71 0x93 154 0xD3 314

0x14 15 0x54 72 0x94 156 0xD4 318

0x15 16 0x55 73 0x95 158 0xD5 322

0x16 17 0x56 74 0x96 160 0xD6 326

0x17 17 0x57 75 0x97 161 0xD7 331

0x18 18 0x58 76 0x98 163 0xD8 335

0x19 19 0x59 78 0x99 165 0xD9 340

0x1A 20 0x5A 79 0x9A 166 0xDA 345

0x1B 21 0x5B 80 0x9B 168 0xDB 349

0x1C 21 0x5C 81 0x9C 170 0xDC 354

0x1D 22 0x5D 82 0x9D 172 0xDD 359

0x1E 23 0x5E 83 0x9E 174 0xDE 365

0x1F 24 0x5F 84 0x9F 176 0xDF 370

0x20 25 0x60 85 0xA0 177 0xE0 375

0x21 25 0x61 86 0xA1 179 0xE1 381

0x22 26 0x62 88 0xA2 181 0xE2 387

0x23 27 0x63 89 0xA3 183 0xE3 393

0x24 28 0x64 90 0xA4 185 0xE4 400

0x25 29 0x65 91 0xA5 187 0xE5 406

0x26 29 0x66 92 0xA6 189 0xE6 413

0x27 30 0x67 93 0xA7 191 0xE7 420

0x28 31 0x68 95 0xA8 193 0xE8 427

0x29 32 0x69 96 0xA9 195 0xE9 435

0x2A 33 0x6A 97 0xAA 197 0xEA 443

0x2B 34 0x6B 98 0xAB 199 0xEB 451

0x2C 35 0x6C 99 0xAC 201 0xEC 460

0x2D 35 0x6D 101 0xAD 204 0xED 470

0x2E 36 0x6E 102 0xAE 206 0xEE 479

0x2F 37 0x6F 103 0xAF 208 0xEF 490

0x30 38 0x70 104 0xB0 210 0xF0 500

0x31 39 0x71 106 0xB1 213 0xF1 512

0x32 40 0x72 107 0xB2 215 0xF2 525

0x33 41 0x73 108 0xB3 217 0xF3 538

0x34 41 0x74 109 0xB4 220 0xF4 552

0x35 42 0x75 111 0xB5 222 0xF5 568

0x36 43 0x76 112 0xB6 224 0xF6 585

0x37 44 0x77 113 0xB7 227 0xF7 604

0x38 45 0x78 115 0xB8 229 0xF8 625

0x39 46 0x79 116 0xB9 232 0xF9 650

0x3A 47 0x7A 117 0xBA 234 0xFA 677

0x3B 48 0x7B 119 0xBB 237 0xFB 710

0x3C 49 0x7C 120 0xBC 240 0xFC 750

0x3D 50 0x7D 121 0xBD 242 0xFD 802

0x3E 51 0x7E 123 0xBE 245 0xFE 875

0x3F 51 0x7F 124 0xBF 248 0xFF 1000

Example 1: Set the interval to 125 mS (8 instructions per second).

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) SPEED 0x02 (00000010)

0x01 (00000001) 0x80 0x80 (10000000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) SPEED 0x02 (00000010)

0x01 (00000001) 0x0D 0x0D (00001101)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) SPEED 0x02 (00000010)

0x01 (00000001) 0xFF 0xFF (11111111)

0x02 (00000010) SPEED 0x02 (00000010)

0x03 (00000011) 0x00 0x00 (00000000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) INITSP 0x03 (00000011)

Example 2: Set the interval to 10 mS (100 instructions per second).

Example 3: Perform a one-second time delay, then resume execution at the maximum rate.

0x03 INITSP

Description: Initialise the Stack Pointer to point to the top of the stack (i.e. empty the stack).
Usage: INITSP
Program Bytes Used: 1
Status Flags Affected: None

Example:

Tip: If your program uses the stack (CALL / RETURN instructions), use of this instruction
(typically near the beginning of your program) is recommended. If omitted, repeatedly
restarting the program by simply resetting the Program Counter may eventually lead to a
stack overflow condition.

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYLA 0x04 (00000100)

0x01 (00000001) 0x7B 0x7B (01111011)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYLR 0x05 (00000101)

0x01 (00000001) 0x23 0x23 (00100011)

0x02 (00000010) 0xF0 0xF0 (11110000)

0x04 COPYLA

Description: Copy the literal value to the Accumulator.
Usage: COPYLA lit
Program Bytes Used: 2
Status Flags Affected: Z

Example: Copy the number 0x7B (01111011) to the Accumulator.

Pre-Conditions:

Accumulator = 0x10 (00010000)
Z = ?

Post-Conditions:

Accumulator = 0x7B (01111011)
Z = 0

0x05 COPYLR

Description: Copy the literal value to RAM at the specified address.
Usage: COPYLR lit,addr
Program Bytes Used: 3
Status Flags Affected: Z

Example 1: Copy the number 0x23 (00100011) to RAM at address 0xF0 (11110000).

Pre-Conditions:

RAM at address 0xF0 (11110000) = 0x00 (00000000)
Z = ?

Post-Conditions:

RAM at address 0xF0 (11110000) = 0x23 (00100011)
Z = 0

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYLR 0x05 (00000101)

0x01 (00000001) 0x52 0x52 (01010010)

0x02 (00000010) 0xF1 0xF1 (11110001)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYLI 0x06 (00000110)

0x01 (00000001) 0x17 0x17 (00010111)

0x02 (00000010) 0xE0 0xE0 (11100000)

Example 2: Copy the number 0x52 (01010010) to RAM at address 0xF1 (11110001).

Pre-Conditions:

RAM at address 0xF1 (11110001) = 0x0F (00001111)
Z = ?

Post-Conditions:

RAM at address 0xF1 (11110001) = 0x52 (01010010)
Z = 0

0x06 COPYLI

Description: Copy the literal value to RAM at the address contained in RAM at the specified
address.
Usage: COPYLI lit,addr
Program Bytes Used: 3
Status Flags Affected: Z

Example: Copy the number 0x17 (00010111) to RAM through the pointer at address 0xE0
(11100000).

Pre-Conditions:

RAM at address 0xE0 (11100000) = 0x20 (00100000)
RAM at address 0x20 (00100000) = 0x00 (00000000)
Z = ?

Post-Conditions:

RAM at address 0xE0 (11100000) = 0x20 (00100000)
RAM at address 0x20 (00100000) = 0x17 (00010111)
Z = 0

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYAR 0x07 (00000111)

0x01 (00000001) 0xFA 0xFA (11111010)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYAR 0x07 (00000111)

0x01 (00000001) 0x8C 0x8C (10001100)

0x07 COPYAR

Description: Copy the contents of the Accumulator to RAM at the specified address.
Usage: COPYAR addr
Program Bytes Used: 2
Status Flags Affected: Z

Example 1: Copy the contents of the Accumulator to RAM at address 0xFA (11111010).

Pre-Conditions:

Accumulator = 0x02 (00000010)
RAM at address 0xFA (11111010) = 0x07 (00000111)
Z = ?

Post-Conditions:

Accumulator = 0x02 (00000010)
RAM at address 0xFA (11111010) = 0x02 (00000010)
Z = 0

Example 2: Copy the contents of the Accumulator to RAM at address 0x8C (10001100).

Pre-Conditions:

Accumulator = 0x81 (10000001)
RAM at address 0x8C (10001100) = 0x14 (00010100)
Z = ?

Post-Conditions:

Accumulator = 0x81 (10000001)
RAM at address 0x8C (10001100) = 0x81 (10000001)
Z = 0

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYAI 0x08 (00001000)

0x01 (00000001) 0xC0 0xC0 (11000000)

0x08 COPYAI

Description: Copy the contents of the Accumulator to RAM at the address contained in RAM at
the specified address.
Usage: COPYAI addr
Program Bytes Used: 2
Status Flags Affected: Z

Example: Copy the contents of the Accumulator to RAM through the pointer at address 0xC0
(11000000).

Pre-Conditions:

Accumulator = 0xAC (10101100)
RAM at address 0xC0 (11000000) = 0xD0 (11010000)
RAM at address 0xD0 (11010000) = 0xFF (11111111)
Z = ?

Post-Conditions:

Accumulator = 0xAC (10101100)
RAM at address 0xC0 (11000000) = 0xD0 (11010000)
RAM at address 0xD0 (11010000) = 0xAC (10101100)
Z = 0

0x09 COPYRA

Description: Copy the contents of RAM at the specified address to the Accumulator.
Usage: COPYRA addr
Program Bytes Used: 2
Status Flags Affected: Z

Example 1: Copy the contents of RAM at address 0xF3 (11110011) to the Accumulator.

Pre-Conditions:

RAM at address 0xF3 (11110011) = 0x7F (01111111)
Accumulator = 0x10 (00010000)
Z = ?

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYRA 0x09 (00001001)

0x01 (00000001) 0xF3 0xF3 (11110011)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYRA 0x09 (00001001)

0x01 (00000001) 0x8C 0x8C (10001100)

Post-Conditions:

RAM at address 0xF3 (11110011) = 0x7F (01111111)
Accumulator = 0x7F (01111111)
Z = 0

Example 2: Copy the contents of RAM at address 0x8C (10001100) to the Accumulator.

Pre-Conditions:

RAM at address 0x8C (10001100) = 0x20 (00100000)
Accumulator = 0x38 (00111000)
Z = ?

Post-Conditions:

RAM at address 0x8C (10001100) = 0x20 (00100000)
Accumulator = 0x20 (00100000)
Z = 0

0x0A COPYRR

Description: Copy the contents of RAM at the specified source address to RAM at the specified
destination address.
Usage: COPYRR src_addr,dst_addr
Program Bytes Used: 3
Status Flags Affected: Z

Example 1: Copy the contents of RAM at address 0xF0 (11110000) to RAM at address 0xF1
(11110001).

Pre-Conditions:

RAM at address 0xF0 (11110000) = 0x0A (00001010)
RAM at address 0xF1 (11110001) = 0x00 (00000000)
Z = ?

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYRR 0x0A (00001010)

0x01 (00000001) 0xF0 0xF0 (11110000)

0x02 (00000010) 0xF1 0xF1 (11110001)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYRR 0x0A (00001010)

0x01 (00000001) 0xF5 0xF5 (11110101)

0x02 (00000010) 0xF4 0xF4 (11110100)

Post-Conditions:

RAM at address 0xF0 (11110000) = 0x0A (00001010)
RAM at address 0xF1 (11110001) = 0x0A (00001010)
Z = 0

Example 2: Copy the contents of RAM at address 0xF5 (11110101) to RAM at address 0xF4
(11110100).

Pre-Conditions:

RAM at address 0xF5 (11110101) = 0x00 (00000000)
RAM at address 0xF4 (11110100) = 0x19 (00011001)
Z = ?

Post-Conditions:

RAM at address 0xF5 (11110101) = 0x00 (00000000)
RAM at address 0xF4 (11110100) = 0x00 (00000000)
Z = 1

0x0B COPYRI

Description: Copy the contents of RAM at the specified source address to RAM at the address
contained in RAM at the specified destination address.
Usage: COPYRI src_addr,dst_addr
Program Bytes Used: 3
Status Flags Affected: Z

Example: Copy the contents of RAM at address 0xB0 (10110000) to RAM through the pointer at
address 0xC0 (11000000).

Pre-Conditions:

RAM at address 0xB0 (10110000) = 0x45 (01000101)
RAM at address 0xC0 (11000000) = 0xD0 (11010000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYRI 0x0B (00001011)

0x01 (00000001) 0xB0 0xB0 (10110000)

0x02 (00000010) 0xC0 0xC0 (11000000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYIA 0x0C (00001100)

0x01 (00000001) 0xC0 0xC0 (11000000)

RAM at address 0xD0 (11010000) = 0xFF (11111111)
Z = ?

Post-Conditions:

RAM at address 0xB0 (10110000) = 0x45 (01000101)
RAM at address 0xC0 (11000000) = 0xD0 (11010000)
RAM at address 0xD0 (11010000) = 0x45 (01000101)
Z = 0

0x0C COPYIA

Description: Copy the contents of RAM at the address contained in RAM at the specified address
to the Accumulator.
Usage: COPYIA addr
Program Bytes Used: 2
Status Flags Affected: Z

Example: Copy the contents of RAM through the pointer at address 0xC0 (11000000) to the
Accumulator.

Pre-Conditions:

RAM at address 0xC0 (11000000) = 0xD0 (11010000)
RAM at address 0xD0 (11010000) = 0xFF (11111111)
Accumulator = 0xAC (10101100)
Z = ?

Post-Conditions:

RAM at address 0xC0 (11000000) = 0xD0 (11010000)
RAM at address 0xD0 (11010000) = 0xFF (11111111)
Accumulator = 0xFF (11111111)
Z = 0

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYIR 0x0D (00001101)

0x01 (00000001) 0xC0 0xC0 (11000000)

0x02 (00000010) 0xE0 0xE0 (11100000)

0x0D COPYIR

Description: Copy the contents of RAM at the address contained in RAM at the specified source
address to RAM at the specified destination address.
Usage: COPYIR src_addr,dst_addr
Program Bytes Used: 3
Status Flags Affected: Z

Example: Copy the contents of RAM through the pointer at address 0xC0 (11000000) to RAM at
address 0xE0 (11100000).

Pre-Conditions:

RAM at address 0xC0 (11000000) = 0xD0 (11010000)
RAM at address 0xD0 (11010000) = 0x99 (10011001)
RAM at address 0xE0 (11100000) = 0x60 (01100000)
Z = ?

Post-Conditions:

RAM at address 0xC0 (11000000) = 0xD0 (11010000)
RAM at address 0xD0 (11010000) = 0x99 (10011001)
RAM at address 0xE0 (11100000) = 0x99 (10011001)
Z = 0

0x0E COPYII

Description: Copy the contents of RAM at the address contained in RAM at the specified source
address to RAM at the address contained in RAM at the specified destination address.
Usage: COPYII src_addr,dst_addr
Program Bytes Used: 3
Status Flags Affected: Z

Example: Copy the contents of RAM through the pointer at address 0xC0 (11000000) to RAM
through the pointer at address 0xE0 (11100000).

Pre-Conditions:

RAM at address 0xC0 (11000000) = 0xD0 (11010000)
RAM at address 0xD0 (11010000) = 0x18 (00011000)
RAM at address 0xE0 (11100000) = 0xF0 (11110000)
RAM at address 0xF0 (11110000) = 0x81 (10000001)
Z = ?

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYII 0x0E (00001110)

0x01 (00000001) 0xC0 0xC0 (11000000)

0x02 (00000010) 0xE0 0xE0 (11100000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) SWAPRA 0x0F (00001111)

0x01 (00000001) 0x10 0x10 (00010000)

Post-Conditions:

RAM at address 0xC0 (11000000) = 0xD0 (11010000)
RAM at address 0xD0 (11010000) = 0x18 (00011000)
RAM at address 0xE0 (11100000) = 0xF0 (11110000)
RAM at address 0xF0 (11110000) = 0x18 (00011000)
Z = 0

0x0F SWAPRA

Description: Swap the contents of RAM at the specified address with the contents of the
Accumulator.
Usage: SWAPRA addr
Program Bytes Used: 2
Status Flags Affected: None

Example: Swap the contents of RAM at address 0x10 (00010000) with the contents of the
Accumulator.

Pre-Conditions:

RAM at address 0x10 (00010000) = 0xAA (10101010)
Accumulator = 0x55 (01010101)

Post-Conditions:

RAM at address 0x10 (00010000) = 0x55 (01010101)
Accumulator = 0xAA (10101010)

0x10 SWAPRR

Description: Swap the contents of RAM at the specified source address with the contents of RAM
at the specified destination address.
Usage: SWAPRR src_addr,dst_addr
Program Bytes Used: 3
Status Flags Affected: None

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) SWAPRR 0x10 (00010000)

0x01 (00000001) 0x10 0x10 (00010000)

0x02 (00000010) 0x20 0x20 (00100000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) ADDLA 0x11 (00010001)

0x01 (00000001) 0x0F 0x0F (00001111)

Example: Swap the contents of RAM at address 0x10 (00010000) with the contents of RAM at
address 0x20 (00100000).

Pre-Conditions:

RAM at address 0x10 (00010000) = 0x0D (00001101)
RAM at address 0x20 (00100000) = 0x0A (00001010)

Post-Conditions:

RAM at address 0x10 (00010000) = 0x0A (00001010)
RAM at address 0x20 (00100000) = 0x0D (00001101)

0x11 ADDLA

Description: Add the literal value and the Carry flag to the Accumulator.
Usage: ADDLA lit
Program Bytes Used: 2
Status Flags Affected: Z, C

Example 1: Add the literal value 0x0F (00001111) to the Accumulator.

Pre-Conditions:

Accumulator = 0x00 (00000000)
Z = ?
C = 0

Post-Conditions:

Accumulator = 0x0F (00001111)
Z = 0
C = 0

Example 2: Add the literal value 0x01 (00000001) to the Accumulator.

Pre-Conditions:

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) ADDLA 0x11 (00010001)

0x01 (00000001) 0x01 0x01 (00000001)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) ADDRA 0x12 (00010010)

0x01 (00000001) 0xFA 0xFA (11111010)

Accumulator = 0xFF (11111111)
Z = ?
C = 0

Post-Conditions:

Accumulator = 0x00 (00000000)
Z = 1
C = 1

0x12 ADDRA

Description: Add the contents of RAM at the specified address and the Carry flag to the
Accumulator.
Usage: ADDRA addr
Program Bytes Used: 2
Status Flags Affected: Z, C

Example 1: Add the contents of RAM at address 0xFA (11111010) to the Accumulator.

Pre-Conditions:

RAM at address 0xFA (11111010) = 0x64 (01100100)
Accumulator = 0x64 (01100100)
Z = ?
C = 0

Post-Conditions:

RAM at address 0xFA (11111010) = 0x64 (01100100)
Accumulator = 0xC8 (11001000)
Z = 0
C = 0

Example 2: Add the contents of RAM at address 0xF9 (11111001) to the Accumulator.

Pre-Conditions:

RAM at address 0xF9 (11111001) = 0x48 (01001000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) ADDRA 0x12 (00010010)

0x01 (00000001) 0xF9 0xF9 (11111001)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) SUBLA 0x13 (00010011)

0x01 (00000001) 0x14 0x14 (00010100)

Accumulator = 0x28 (00101000)
Z = ?
C = 0

Post-Conditions:

RAM at address 0xF9 (11111001) = 0x48 (01001000)
Accumulator = 0x70 (01110000)
Z = 0
C = 0

0x13 SUBLA

Description: Subtract the literal value and the Carry flag from the Accumulator.
Usage: SUBLA lit
Program Bytes Used: 2
Status Flags Affected: Z, C

Example 1: Subtract the literal value 0x14 (00010100) from the Accumulator.

Pre-Conditions:

Accumulator = 0x14 (00010100)
Z = ?
C = 0

Post-Conditions:

Accumulator = 0x00 (00000000)
Z = 1
C = 0

Example 2: Subtract the literal value 0x29 (00101001) from the Accumulator.

Pre-Conditions:

Accumulator = 0x28 (00101000)
Z = ?
C = 0

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) SUBLA 0x13 (00010011)

0x01 (00000001) 0x29 0x29 (00101001)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) SUBRA 0x14 (00010100)

0x01 (00000001) 0xFA 0xFA (11111010)

Post-Conditions:

Accumulator = 0xFF (11111111)
Z = 0
C = 1

0x14 SUBRA

Description: Subtract the contents of RAM at the specified address and the Carry flag from the
Accumulator.
Usage: SUBRA addr
Program Bytes Used: 2
Status Flags Affected: Z, C

Example 1: Subtract the contents of RAM at address 0xFA (11111010) from the Accumulator.

Pre-Conditions:

RAM at address 0xFA (11111010) = 0x22 (00100010)
Accumulator = 0xC9 (11001001)
Z = ?
C = 0

Post-Conditions:

RAM at address 0xFA (11111010) = 0x22 (00100010)
Accumulator = 0xA7 (10100111)
Z = 0
C = 0

Example 2: Subtract the contents of RAM at address 0xF5 (11110101) from the Accumulator.

Pre-Conditions:

RAM at address 0xF5 (11110101) = 0xFF (11111111)
Accumulator = 0xFF (11111111)
Z = ?
C = 0

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) SUBRA 0x14 (00010100)

0x01 (00000001) 0xF5 0xF5 (11110101)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) MUL 0x15 (00010101)

0x01 (00000001) 0xC0 0xC0 (11000000)

0x02 (00000010) 0xC1 0xC1 (11000001)

Post-Conditions:

RAM at address 0xF5 (11110101) = 0xFF (11111111)
Accumulator = 0x00 (00000000)
Z = 1
C = 0

0x15 MUL

Description: Multiply the contents of RAM at the first specified address (multiplicand) by the
contents of RAM at the second specified address (multiplier). Store the product in RAM at the first
specified address.
Usage: MUL multiplicand_product_addr,multiplier_addr
Program Bytes Used: 3
Status Flags Affected: Z, C

Example 1: Multiply the contents of RAM at address 0xC0 (11000000) by the contents of RAM at
address 0xC1 (11000001).

Pre-Conditions:

RAM at address 0xC0 (11000000) = 0x0F (00001111)
RAM at address 0xC1 (11000001) = 0x0A (00001010)
Z = ?
C = ?

Post-Conditions:

RAM at address 0xC0 (11000000) = 0x96 (10010110)
RAM at address 0xC1 (11000001) = 0x0A (00001010)
Z = 0
C = 0

Example 2: Multiply the contents of RAM at address 0xC0 (11000000) by the contents of RAM at
address 0xC1 (11000001).

Pre-Conditions:

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) MUL 0x15 (00010101)

0x01 (00000001) 0xC0 0xC0 (11000000)

0x02 (00000010) 0xC1 0xC1 (11000001)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) DIV 0x16 (00010110)

0x01 (00000001) 0xC0 0xC0 (11000000)

0x02 (00000010) 0xC1 0xC1 (11000001)

RAM at address 0xC0 (11000000) = 0x20 (00100000)
RAM at address 0xC1 (11000001) = 0x08 (00001000)
Z = ?
C = ?

Post-Conditions:

RAM at address 0xC0 (11000000) = 0x00 (00000000)
RAM at address 0xC1 (11000001) = 0x08 (00001000)
Z = 1
C = 1

0x16 DIV

Description: Divide the contents of RAM at the first specified address (dividend) by the contents
of RAM at the second specified address (divisor). Store the quotient in RAM at the first specified
address. Store the remainder in the Accumulator. The Z flag reflects the zero status of the
quotient, and the C flag reflects the zero status of the remainder.
Usage: DIV dividend_quotient_addr,divisor_addr
Program Bytes Used: 3
Status Flags Affected: Z, C

Example 1: Divide the contents of RAM at address 0xC0 (11000000) by the contents of RAM at
address 0xC1 (11000001).

Pre-Conditions:

RAM at address 0xC0 (11000000) = 0xFF (11111111)
RAM at address 0xC1 (11000001) = 0x0A (00001010)
Accumulator = ?
Z = ?
C = ?

Post-Conditions:

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) DIV 0x16 (00010110)

0x01 (00000001) 0xC0 0xC0 (11000000)

0x02 (00000010) 0xC1 0xC1 (11000001)

RAM at address 0xC0 (11000000) = 0x19 (00011001)
RAM at address 0xC1 (11000001) = 0x0A (00001010)
Accumulator = 0x05 (00000101)
Z = 0
C = 0

Example 2: Divide the contents of RAM at address 0xC0 (11000000) by the contents of RAM at
address 0xC1 (11000001).

Pre-Conditions:

RAM at address 0xC0 (11000000) = 0x64 (01100100)
RAM at address 0xC1 (11000001) = 0x05 (00000101)
Accumulator = ?
Z = ?
C = ?

Post-Conditions:

RAM at address 0xC0 (11000000) = 0x14 (00010100)
RAM at address 0xC1 (11000001) = 0x05 (00000101)
Accumulator = 0x00 (00000000)
Z = 0
C = 1

Tip: If the divisor is zero, the CPU will halt.

0x17 ANDLA

Description: AND the literal value with the contents of the Accumulator.
Usage: ANDLA lit
Program Bytes Used: 2
Status Flags Affected: Z

Example 1: AND the literal value 0x3A (00111010) with the Accumulator.

Pre-Conditions:

Accumulator = 0xAA (10101010)
Z = ?

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) ANDLA 0x17 (00010111)

0x01 (00000001) 0x3A 0x3A (00111010)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) ANDLA 0x17 (00010111)

0x01 (00000001) 0x63 0x63 (01100011)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) ANDRA 0x18 (00011000)

0x01 (00000001) 0xF0 0xF0 (11110000)

Post-Conditions:

Accumulator = 0x2A (00101010)
Z = 0

Example 2: AND the literal value 0x63 (01100011) with the Accumulator.

Pre-Conditions:

Accumulator = 0x9C (10011100)
Z = ?

Post-Conditions:

Accumulator = 0x00 (00000000)
Z = 1

0x18 ANDRA

Description: AND the contents of RAM at the specified address with the Accumulator.
Usage: ANDRA addr
Program Bytes Used: 2
Status Flags Affected: Z

Example 1: AND the contents of RAM at address 0xF0 (11110000) with the Accumulator.

Pre-Conditions:

RAM at address 0xF0 (11110000) = 0x10 (00010000)
Accumulator = 0x30 (00110000)
Z = ?

Post-Conditions:

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) ANDRA 0x18 (00011000)

0x01 (00000001) 0xF2 0xF2 (11110010)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) ORLA 0x19 (00011001)

0x01 (00000001) 0xF0 0xF0 (11110000)

RAM at address 0xF0 (11110000) = 0x10 (00010000)
Accumulator = 0x10 (00010000)
Z = 0

Example 2: AND the contents of RAM at address 0xF2 (11110010) with the Accumulator.

Pre-Conditions:

RAM at address 0xF2 (11110010) = 0x81 (10000001)
Accumulator = 0x9C (10011100)
Z = ?

Post-Conditions:

RAM at address 0xF2 (11110010) = 0x81 (10000001)
Accumulator = 0x80 (10000000)
Z = 0

0x19 ORLA

Description: OR the literal value with the contents of the Accumulator.
Usage: ORLA lit
Program Bytes Used: 2
Status Flags Affected: Z

Example 1: OR the literal value 0xF0 (11110000) with the Accumulator.

Pre-Conditions:

Accumulator = 0x0F (00001111)
Z = ?

Post-Conditions:

Accumulator = 0xFF (11111111)
Z = 0

Example 2: OR the literal value 0x03 (00000011) with the Accumulator.

Pre-Conditions:

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) ORLA 0x19 (00011001)

0x01 (00000001) 0x03 0x03 (00000011)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) ORRA 0x1A (00011010)

0x01 (00000001) 0xF1 0xF1 (11110001)

Accumulator = 0x04 (00000100)
Z = ?

Post-Conditions:

Accumulator = 0x07 (00000111)
Z = 0

0x1A ORRA

Description: OR the contents of RAM at the specified address with the Accumulator.
Usage: ORRA addr
Program Bytes Used: 2
Status Flags Affected: Z

Example 1: OR the contents of RAM at address 0xF1 (11110001) with the Accumulator.

Pre-Conditions:

RAM at address 0xF1 (11110001) = 0x81 (10000001)
Accumulator = 0x0C (00001100)
Z = ?

Post-Conditions:

RAM at address 0xF1 (11110001) = 0x81 (10000001)
Accumulator = 0x8D (10001101)
Z = 0

Example 2: OR the contents of RAM at address 0xF9 (11111001) with the Accumulator.

Pre-Conditions:

RAM at address 0xF9 (11111001) = 0x09 (00001001)
Accumulator = 0x01 (00000001)
Z = ?

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) ORRA 0x1A (00011010)

0x01 (00000001) 0xF9 0xF9 (11111001)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) XORLA 0x1B (00011011)

0x01 (00000001) 0xFF 0xFF (11111111)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) XORLA 0x1B (00011011)

0x01 (00000001) 0x20 0x20 (00100000)

Post-Conditions:

RAM at address 0xF9 (11111001) = 0x09 (00001001)
Accumulator = 0x09 (00001001)
Z = 0

0x1B XORLA

Description: Exclusive-OR the literal value with the contents of the Accumulator.
Usage: XORLA lit
Program Bytes Used: 2
Status Flags Affected: Z

Example 1: Exclusive-OR the literal value 0xFF (11111111) with the Accumulator.

Pre-Conditions:

Accumulator = 0xAA (10101010)
Z = ?

Post-Conditions:

Accumulator = 0x55 (01010101)
Z = 0

Example 2: Exclusive-OR the literal value 0x20 (00100000) with the Accumulator.

Pre-Conditions:

Accumulator = 0x20 (00100000)
Z = ?

Post-Conditions:

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) XORRA 0x1C (00011100)

0x01 (00000001) 0xF5 0xF5 (11110101)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) XORRA 0x1C (00011100)

0x01 (00000001) 0xFA 0xFA (11111010)

Accumulator = 0x00 (00000000)
Z = 1

0x1C XORRA

Description: Exclusive-OR the contents of RAM at the specified address with the Accumulator.
Usage: XORRA addr
Program Bytes Used: 2
Status Flags Affected: Z

Example 1: Exclusive-OR the contents of RAM at address 0xF5 (11110101) with the Accumulator.

Pre-Conditions:

RAM at address 0xF5 (11110101) = 0x09 (00001001)
Accumulator = 0x0F (00001111)
Z = ?

Post-Conditions:

RAM at address 0xF5 (11110101) = 0x09 (00001001)
Accumulator = 0x06 (00000110)
Z = 0

Example 2: Exclusive-OR the contents of RAM at address 0xFA (11111010) with the Accumulator.

Pre-Conditions:

RAM at address 0xFA (11111010) = 0xFF (11111111)
Accumulator = 0x15 (00010101)
Z = ?

Post-Conditions:

RAM at address 0xFA (11111010) = 0xFF (11111111)
Accumulator = 0xEA (11101010)
Z = 0

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) DECR 0x1D (00011101)

0x01 (00000001) 0xF8 0xF8 (11111000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) DECR 0x1D (00011101)

0x01 (00000001) 0xF1 0xF1 (11110001)

0x1D DECR

Description: Decrement the contents of RAM at the specified address.
Usage: DECR addr
Program Bytes Used: 2
Status Flags Affected: Z

Example 1: Decrement the contents of RAM at address 0xF8 (11111000).

Pre-Conditions:

RAM at address 0xF8 (11111000) = 0x2B (00101011)
Z = ?

Post-Conditions:

RAM at address 0xF8 (11111000) = 0x2A (00101010)
Z = 0

Example 2: Decrement the contents of RAM at address 0xF1 (11110001).

Pre-Conditions:

RAM at address 0xF1 (11110001) = 0x01 (00000001)
Z = ?

Post-Conditions:

RAM at address 0xF1 (11110001) = 0x00 (00000000)
Z = 1

0x1E INCR

Description: Increment the contents of RAM at the specified address.
Usage: INCR addr
Program Bytes Used: 2
Status Flags Affected: Z

Example 1: Increment the contents of RAM at address 0xF8 (11111000).

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) INCR 0x1E (00011110)

0x01 (00000001) 0xF8 0xF8 (11111000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) INCR 0x1E (00011110)

0x01 (00000001) 0xF1 0xF1 (11110001)

Pre-Conditions:

RAM at address 0xF8 (11111000) = 0xFF (11111111)
Z = ?

Post-Conditions:

RAM at address 0xF8 (11111000) = 0x00 (00000000)
Z = 1

Example 2: Increment the contents of RAM at address 0xF1 (11110001).

Pre-Conditions:

RAM at address 0xF1 (11110001) = 0x01 (00000001)
Z = ?

Post-Conditions:

RAM at address 0xF1 (11110001) = 0x02 (00000010)
Z = 0

0x1F DECRJZ

Description: Decrement the contents of RAM at the specified address. If the result is zero,
advance the Program Counter by two.
Usage: DECRJZ addr
Program Bytes Used: 2
Status Flags Affected: Z

Example 1: Decrement the contents of RAM at address 0xFA (11111010). Since the result is not
zero, execution continues with the JUMP instruction.

Pre-Conditions:

RAM at address 0xFA (11111010) = 0x05 (00000101)
Z = ?

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) DECRJZ 0x1F (00011111)

0x01 (00000001) 0xFA 0xFA (11111010)

0x02 (00000010) JUMP 0x28 (00101000)

0x03 (00000011) 0x00 0x00 (00000000)

0x04 (00000100) HALT 0x00 (00000000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) DECRJZ 0x1F (00011111)

0x01 (00000001) 0xFA 0xFA (11111010)

0x02 (00000010) JUMP 0x28 (00101000)

0x03 (00000011) 0x00 0x00 (00000000)

0x04 (00000100) HALT 0x00 (00000000)

Post-Conditions:

RAM at address 0xFA (11111010) = 0x04 (00000100)
Z = 0

Example 2: Decrement the contents of RAM at address 0xFA (11111010). Since the result is zero,
execution continues with the HALT instruction.

Pre-Conditions:

RAM at address 0xFA (11111010) = 0x01 (00000001)
Z = ?

Post-Conditions:

RAM at address 0xFA (11111010) = 0x00 (00000000)
Z = 1

0x20 INCRJZ

Description: Increment the contents of RAM at the specified address. If the result is zero,
advance the Program Counter by two.
Usage: INCRJZ addr
Program Bytes Used: 2
Status Flags Affected: Z

Example 1: Increment the contents of RAM at address 0xFB (11111011). Since the result is not
zero, execution continues with the JUMP instruction.

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) INCRJZ 0x20 (00100000)

0x01 (00000001) 0xFB 0xFB (11111011)

0x02 (00000010) JUMP 0x28 (00101000)

0x03 (00000011) 0x00 0x00 (00000000)

0x04 (00000100) HALT 0x00 (00000000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) INCRJZ 0x20 (00100000)

0x01 (00000001) 0xFB 0xFB (11111011)

0x02 (00000010) JUMP 0x28 (00101000)

0x03 (00000011) 0x00 0x00 (00000000)

0x04 (00000100) HALT 0x00 (00000000)

Pre-Conditions:

RAM at address 0xFB (11111011) = 0xDE (11011110)
Z = ?

Post-Conditions:

RAM at address 0xFB (11111011) = 0xDF (11011111)
Z = 0

Example 2: Increment the contents of RAM at address 0xFB (11111011). Since the result is zero,
execution continues with the HALT instruction.

Pre-Conditions:

RAM at address 0xFB (11111011) = 0xFF (11111111)
Z = ?

Post-Conditions:

RAM at address 0xFB (11111011) = 0x00 (00000000)
Z = 1

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) SHIFTRL 0x21 (00100001)

0x01 (00000001) 0xF1 0xF1 (11110001)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) SHIFTRL 0x21 (00100001)

0x01 (00000001) 0xF1 0xF1 (11110001)

0x21 SHIFTRL

Description: Shift (rotate) left through Carry the contents of RAM at the specified address.
Usage: SHIFTRL addr
Program Bytes Used: 2
Status Flags Affected: C

Example 1: Shift left through Carry the contents of RAM at address 0xF1 (11110001).

Pre-Conditions:

RAM at address 0xF1 (11110001) = 0x55 (01010101)
C = 1

Post-Conditions:

RAM at address 0xF1 (11110001) = 0xAB (10101011)
C = 0

Example 2: Shift left through Carry the contents of RAM at address 0xF1 (11110001).

Pre-Conditions:

RAM at address 0xF1 (11110001) = 0xAB (10101011)
C = 0

Post-Conditions:

RAM at address 0xF1 (11110001) = 0x56 (01010110)
C = 1

0x22 SHIFTRR

Description: Shift (rotate) right through Carry the contents of RAM at the specified address.
Usage: SHIFTRR addr
Program Bytes Used: 2
Status Flags Affected: C

Example 1: Shift right through Carry the contents of RAM at address 0xF1 (11110001).

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) SHIFTRR 0x22 (00100010)

0x01 (00000001) 0xF1 0xF1 (11110001)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) SHIFTRR 0x22 (00100010)

0x01 (00000001) 0xF1 0xF1 (11110001)

Pre-Conditions:

RAM at address 0xF1 (11110001) = 0x55 (01010101)
C = 1

Post-Conditions:

RAM at address 0xF1 (11110001) = 0xAA (10101010)
C = 1

Example 2: Shift right through Carry the contents of RAM at address 0xF1 (11110001).

Pre-Conditions:

RAM at address 0xF1 (11110001) = 0xAA (10101010)
C = 1

Post-Conditions:

RAM at address 0xF1 (11110001) = 0xD5 (11010101)
C = 0

0x23 BCLR

Description: Clear the specified bit in RAM at the specified address. The bit number is evaluated
as modulo 8.
Usage: BCLR bit,addr
Program Bytes Used: 3
Status Flags Affected: None

Example: Clear bit 7 (00000111) in RAM at address 0xF0 (11110000).

Pre-Conditions:

RAM at address 0xF0 (11110000) = 0xFF (11111111)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) BCLR 0x23 (00100011)

0x01 (00000001) 0x07 0x07 (00000111)

0x02 (00000010) 0xF0 0xF0 (11110000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) BSET 0x24 (00100100)

0x01 (00000001) 0x07 0x07 (00000111)

0x02 (00000010) 0xF0 0xF0 (11110000)

Post-Conditions:

RAM at address 0xF0 (11110000) = 0x7F (01111111)

0x24 BSET

Description: Set the specified bit in RAM at the specified address. The bit number is evaluated as
modulo 8.
Usage: BSET bit,addr
Program Bytes Used: 3
Status Flags Affected: None

Example: Set bit 7 (00000111) in RAM at address 0xF0 (11110000).

Pre-Conditions:

RAM at address 0xF0 (11110000) = 0x00 (00000000)

Post-Conditions:

RAM at address 0xF0 (11110000) = 0x80 (10000000)

0x25 BCHG

Description: Change (invert) the specified bit in RAM at the specified address. The bit number is
evaluated as modulo 8.
Usage: BCHG bit,addr
Program Bytes Used: 3
Status Flags Affected: None

Example: Change bit 3 (00000011) in RAM at address 0xF0 (11110000).

Pre-Conditions:

RAM at address 0xF0 (11110000) = 0xA5 (10100101)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) BCHG 0x25 (00100101)

0x01 (00000001) 0x03 0x03 (00000011)

0x02 (00000010) 0xF0 0xF0 (11110000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) BTSTSC 0x26 (00100110)

0x01 (00000001) 0x02 0x02 (00000010)

0x02 (00000010) 0xF9 0xF9 (11111001)

0x03 (00000011) JUMP 0x28 (00101000)

0x04 (00000100) 0x10 0x10 (00010000)

0x05 (00000101) HALT 0x00 (00000000)

Post-Conditions:

RAM at address 0xF0 (11110000) = 0xAD (10101101)

0x26 BTSTSC

Description: Test the specified bit in RAM at the specified address. If it is clear (0), advance the
Program Counter by two. The bit number is evaluated as modulo 8.
Usage: BTSTSC bit,addr
Program Bytes Used: 3
Status Flags Affected: None

Example 1: Test bit 2 (00000010) in RAM at address 0xF9 (11111001). Since it is clear (0),
execution continues with the HALT instruction.

Pre-Conditions:

RAM at address 0xF9 (11111001) = 0x03 (00000011)

Post-Conditions:

RAM at address 0xF9 (11111001) = 0x03 (00000011)

Example 2: Test bit 2 (00000010) in RAM at address 0xF9 (11111001). Since it is set (1), execution
continues with the JUMP instruction.

Pre-Conditions:

RAM at address 0xF9 (11111001) = 0x0F (00001111)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) BTSTSC 0x26 (00100110)

0x01 (00000001) 0x02 0x02 (00000010)

0x02 (00000010) 0xF9 0xF9 (11111001)

0x03 (00000011) JUMP 0x28 (00101000)

0x04 (00000100) 0x10 0x10 (00010000)

0x05 (00000101) HALT 0x00 (00000000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) BTSTSS 0x27 (00100111)

0x01 (00000001) 0x04 0x04 (00000100)

0x02 (00000010) 0xF8 0xF8 (11111000)

0x03 (00000011) JUMP 0x28 (00101000)

0x04 (00000100) 0x14 0x14 (00010100)

0x05 (00000101) HALT 0x00 (00000000)

Post-Conditions:

RAM at address 0xF9 (11111001) = 0x0F (00001111)

0x27 BTSTSS

Description: Test the specified bit in RAM at the specified address. If it is set (1), advance the
Program Counter by two. The bit number is evaluated as modulo 8.
Usage: BTSTSS bit,addr
Program Bytes Used: 3
Status Flags Affected: None

Example 1: Test bit 4 (00000100) in RAM at address 0xF8 (11111000). Since it is set (1), execution
continues with the HALT instruction.

Pre-Conditions:

RAM at address 0xF8 (11111000) = 0x1F (00011111)

Post-Conditions:

RAM at address 0xF8 (11111000) = 0x1F (00011111)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) BTSTSS 0x27 (00100111)

0x01 (00000001) 0x07 0x07 (00000111)

0x02 (00000010) 0xF8 0xF8 (11111000)

0x03 (00000011) JUMP 0x28 (00101000)

0x04 (00000100) 0x14 0x14 (00010100)

0x05 (00000101) HALT 0x00 (00000000)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) JUMP 0x28 (00101000)

0x01 (00000001) 0x10 0x10 (00010000)

...

0x10 (00010000) JUMP 0x28 (00101000)

0x11 (00010001) 0x00 0x00 (00000000)

Example 2: Test bit 7 (00000111) in RAM at address 0xF8 (11111000). Since it is clear (0),
execution continues with the JUMP instruction.

Pre-Conditions:

RAM at address 0xF8 (11111000) = 0x1F (00011111)

Post-Conditions:

RAM at address 0xF8 (11111000) = 0x1F (00011111)

0x28 JUMP

Description: Copy the specified address to the Program Counter.
Usage: JUMP addr
Program Bytes Used: 2
Status Flags Affected: None

Example: JUMP to address 0x10 (00010000), then JUMP back to address 0x00 (00000000), i.e. an
infinite loop.

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) JUMPI 0x29 (00101001)

0x01 (00000001) 0x10 0x10 (00010000)

...

0x10 (00010000) 0x20 0x20 (00100000)

...

0x20 (00100000) NOP 0x01 (00000001)

0x29 JUMPI

Description: Copy the contents of RAM at the specified address to the Program Counter.
Usage: JUMPI addr
Program Bytes Used: 2
Status Flags Affected: None

Example: JUMPI to the address contained in RAM at address 0x10 (00010000). Execution
continues with the NOP instruction.

0x2A CALL

Description: Push the Program Counter to the stack, then copy the specified address to the
Program Counter.
Usage: CALL addr
Program Bytes Used: 2
Status Flags Affected: None

Example: Call the subroutine at address 0x10 (00010000), copy the contents of the Button
Register to the Data LEDs Register, then return and stop.

Address Hex
(Binary)

Instruction
Machine Code Hex
(Binary)

Remarks

0x00 (00000000) CALL 0x2A (00101010)

0x01 (00000001) 0x10 0x10 (00010000)

0x02 (00000010) HALT 0x00 (00000000)

...

0x10 (00010000) COPYRR 0x0A (00001010)

0x11 (00010001) 0xFD 0xFD (11111101) Button Register

0x12 (00010010) 0xFF 0xFF (11111111)
Data LEDs
Register

0x13 (00010011) RETURN 0x2C (00101100)

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) CALLI 0x2B (00101011)

0x01 (00000001) 0x10 0x10 (00010000)

...

0x10 (00010000) 0x20 0x20 (00100000)

...

0x20 (00100000) NOP 0x01 (00000001)

Tip: Use this instruction to execute a subroutine. When the subroutine executes a RETURN
(or RETLA) instruction, execution continues with the instruction immediately following the
CALL instruction.

0x2B CALLI

Description: Push the Program Counter to the stack, then copy the contents of RAM at the
specified address to the Program Counter.
Usage: CALLI addr
Program Bytes Used: 2
Status Flags Affected: None

Example: Call the subroutine at the address contained in RAM at address 0x10 (00010000).
Execution continues with the NOP instruction.

Address Hex
(Binary)

Instruction
Machine Code Hex
(Binary)

Remarks

0x00 (00000000) CALL 0x2A (00101010)

0x01 (00000001) 0x10 0x10 (00010000)

...
Return value used
here

0x10 (00010000) RETLA 0x2D (00101101) Subroutine

0x11 (00010001) 0x01 0x01 (00000001) Return value

Tip: Use this instruction to execute a subroutine. When the subroutine executes a RETURN
(or RETLA) instruction, execution continues with the instruction immediately following the
CALLI instruction.

0x2C RETURN

Description: Pop the stack to the Program Counter.
Usage: RETURN
Program Bytes Used: 1
Status Flags Affected: None

Example: Refer to the CALL instruction example.

Tip: Use this instruction to return from a subroutine. Execution continues with the
instruction immediately following the most recent CALL (or CALLI) instruction.

0x2D RETLA

Description: Copy the literal value to the Accumulator, then pop the stack to the Program
Counter.
Usage: RETLA lit
Program Bytes Used: 2
Status Flags Affected: None

Example: Call the subroutine at address 0x10 (00010000). The subroutine returns with a value of
0x01 (00000001) in the Accumulator.

Tip: Use this instruction to return from a subroutine and pass a return value to the caller.
Execution continues with the instruction immediately following the most recent CALL (or
CALLI) instruction.

Address Hex
(Binary)

Instruction
Machine Code Hex
(Binary)

RAM Value
Added

0x10 (00010000) ADDRPC 0x2E (00101110)

0x11 (00010001) 0xF0 0xF0 (11110000)

0x12 (00010010) JUMP 0x28 (00101000) 0x00

0x13 (00010011) 0x80 0x80 (10000000)

0x14 (00010100) JUMP 0x28 (00101000) 0x02

0x15 (00010101) 0xA0 0xA0 (10100000)

0x16 (00010110) JUMP 0x28 (00101000) 0x04

0x17 (00010111) 0xC0 0xC0 (11000000)

0x2E ADDRPC

Description: Add the contents of RAM at the specified address to the Program Counter.
Usage: ADDRPC addr
Program Bytes Used: 2
Status Flags Affected: None

Example: Transfer control to one of three addresses depending on the contents of RAM at
address 0xF0 (11110000). In this case, RAM contains 0x04 (00000100), so execution continues at
address 0xC0 (11000000).

Pre-Conditions:

RAM at address 0xF0 (11110000) = 0x04 (00000100)

Post-Conditions:

RAM at address 0xF0 (11110000) = 0x04 (00000100)

0x2F RANDA

Description: Store a pseudo-random number (0x00..0xFF) in the Accumulator.
Usage: RANDA
Program Bytes Used: 1
Status Flags Affected: None

Example: Display a random number on the Data LEDs.

Address Hex
(Binary)

Instruction
Machine Code Hex
(Binary)

Remarks

0x00 (00000000) RANDA 0x2F (00101111)

0x01 (00000001) COPYAR 0x07 (00000111)

0x02 (00000010) 0xFF 0xFF (11111111)
Data LEDs
Register

Address Hex (Binary) Instruction Machine Code Hex (Binary)

0x00 (00000000) COPYLA 0x04 (00000100)

0x01 (00000001) 0x0D 0x0D (00001101)

0x02 (00000010) COMOUT 0xC0 (11000000)

Address Hex
(Binary)

Instruction
Machine Code Hex
(Binary)

Remarks

0x00 (00000000) COMIN 0xC1 (11000001)

0x01 (00000001) COPYAR 0x07 (00000111)

0x02 (00000010) 0xFF 0xFF (11111111)
Data LEDs
Register

0xC0 COMOUT

Description: Output the character in the Accumulator from the Comm Port.
Usage: COMOUT
Program Bytes Used: 1
Status Flags Affected: None

Example: Output a CR character.

0xC1 COMIN

Description: Input a character from the Comm Port to the Accumulator. If no character is
available, block (prevent continued execution of) the program indefinitely until at least one
character has been received.
Usage: COMIN
Program Bytes Used: 1
Status Flags Affected: None

Example: Input a character and display its value on the Data LEDs.

Address Hex
(Binary)

Instruction
Machine Code Hex
(Binary)

Remarks

0x00 (00000000) SPEED 0x02 (00000010)

0x01 (00000001) 0x06 0x06 (00000110)
200 instructions per
second

0x02 (00000010) COMRDY 0xC2 (11000010)

0x03 (00000011) BTSTSS 0x27 (00100111)

0x04 (00000100) 0x00 0x00 (00000000) Z flag

0x05 (00000101) 0xFC 0xFC (11111100) Status Register

0x06 (00000110) COMIN 0xC1 (11000001)

0x07 (00000111) COMOUT 0xC0 (11000000)

0x08 (00001000) INCR 0x1E (00011110)

0x09 (00001001) 0xFF 0xFF (11111111) Data LEDs Register

0x0A (00001010) JUMP 0x28 (00101000)

0x0B (00001011) 0x02 0x02 (00000010)

Tip: If you don't want your program to block while waiting for a character to be received, use
the COMRDY instruction to check for character availability before executing COMIN .

Note: Characters received at the Comm Port are internally buffered by the firmware. COMIN
delivers them to your program on a "first in, first out" basis.

0xC2 COMRDY

Description: Test for availability of received characters from the Comm Port. The Z flag is set if
there are zero characters available (i.e. COMIN would block if executed), or cleared if there is at
least one character available.
Usage: COMRDY
Program Bytes Used: 1
Status Flags Affected: Z

Example: If a character is received from the terminal, echo it to the terminal, while simultaneously
incrementing the Data LEDs.

Pinmask Accumulator / Pins

0x01 (00000001) xxxxxxxA

0x02 (00000010) xxxxxxxB

0x03 (00000011) xxxxxxBA

Address Hex (Binary) Instruction Machine Code Hex (Binary) Remarks

0x04 (00000100) COPYLA 0x04 (00000100)

0x05 (00000101) 0x00 0x00 (00000000) Low

0x06 (00000110) PINOUT 0xC4 (11000100)

0x07 (00000111) 0x01 0x01 (00000001) A pin

Address Hex (Binary) Instruction Machine Code Hex (Binary) Remarks

0x04 (00000100) COPYLA 0x04 (00000100)

0x05 (00000101) 0x01 0x01 (00000001) High

0x06 (00000110) PINOUT 0xC4 (11000100)

0x07 (00000111) 0x02 0x02 (00000010) B pin

0xC4 PINOUT

Description: Output the contents of the Accumulator to the Expansion Port A and/or B pin.
Usage: PINOUT pinmask
Program Bytes Used: 2
Status Flags Affected: None

Example 1: Output low on the Expansion Port A pin.

Pre-Conditions:

The pins have already been configured as outputs, as shown in the PINDIR example.

Example 2: Output high on the Expansion Port B pin.

Pre-Conditions:

The pins have already been configured as outputs, as shown in the PINDIR example.

Example 3: Output the D0 and D1 button states to the Expansion Port A and B pins, respectively.

Pre-Conditions:

The pins have already been configured as outputs, as shown in the PINDIR example.

Address Hex (Binary) Instruction Machine Code Hex (Binary) Remarks

0x04 (00000100) COPYRA 0x09 (00001001)

0x05 (00000101) 0xFD 0xFD (11111101) Button Register

0x06 (00000110) PINOUT 0xC4 (11000100)

0x07 (00000111) 0x03 0x03 (00000011) A and B pins

0x08 (00001000) JUMP 0x28 (00101000)

0x09 (00001001) 0x04 0x04 (00000100)

Pinmask Accumulator / Pins

0x01 (00000001) 0000000A

0x02 (00000010) 0000000B

0x03 (00000011) 000000BA

Address Hex (Binary) Instruction Machine Code Hex (Binary) Remarks

0x04 (00000100) PININ 0xC5 (11000101)

0x05 (00000101) 0x01 0x01 (00000001) A pin

0xC5 PININ

Description: Input from the Expansion Port A and/or B pin to the Accumulator. Bits of the
Accumulator not updated from a pin are cleared.
Usage: PININ pinmask
Program Bytes Used: 2
Status Flags Affected: Z

Example 1: Input from the Expansion Port A pin.

Pre-Conditions:

The pins have already been configured as inputs, as shown in the PINDIR example.
Accumulator = ?

Post-Conditions:

Accumulator = 0x00 (00000000) if A pin is low, or 0x01 (00000001) if A pin is high.
Z = 1 if A pin is low, or 0 if A pin is high

Example 2: Input from the Expansion Port B pin.

Pre-Conditions:

Address Hex (Binary) Instruction Machine Code Hex (Binary) Remarks

0x04 (00000100) PININ 0xC5 (11000101)

0x05 (00000101) 0x02 0x02 (00000010) B pin

Address Hex
(Binary)

Instruction
Machine Code Hex
(Binary)

Remarks

0x04 (00000100) PININ 0xC5 (11000101)

0x05 (00000101) 0x03 0x03 (00000011) A and B pins

0x06 (00000110) COPYAR 0x07 (00000111)

0x07 (00000111) 0xFF 0xFF (11111111)
Data LEDs
Register

0x08 (00001000) JUMP 0x28 (00101000)

0x09 (00001001) 0x04 0x04 (00000100)

The pins have already been configured as inputs, as shown in the PINDIR example.
Accumulator = ?

Post-Conditions:

Accumulator = 0x00 (00000000) if B pin is low, or 0x01 (00000001) if B pin is high.
Z = 1 if B pin is low, or 0 if B pin is high

Example 3: Input from the Expansion Port A and B pins and display the value on the Data LEDs.

Pre-Conditions:

The pins have already been configured as inputs, as shown in the PINDIR example.

0xC6 PINDIR

Description: Configure the direction of the Expansion Port A and/or B pin. If the corresponding
Accumulator bit is 0/1 the pin is made an Output/Input, respectively.

Usage: PINDIR pinmask
Program Bytes Used: 2
Status Flags Affected: None

Pinmask Accumulator / Pins

0x01 (00000001) xxxxxxxA

0x02 (00000010) xxxxxxxB

0x03 (00000011) xxxxxxBA

Address Hex (Binary) Instruction Machine Code Hex (Binary) Remarks

0x00 (00000000) COPYLA 0x04 (00000100)

0x01 (00000001) 0x00 0x00 (00000000) Output

0x02 (00000010) PINDIR 0xC6 (11000110)

0x03 (00000011) 0x01 0x01 (00000001) A pin

Address Hex (Binary) Instruction Machine Code Hex (Binary) Remarks

0x00 (00000000) COPYLA 0x04 (00000100)

0x01 (00000001) 0x01 0x01 (00000001) Input

0x02 (00000010) PINDIR 0xC6 (11000110)

0x03 (00000011) 0x02 0x02 (00000010) B pin

Address Hex (Binary) Instruction Machine Code Hex (Binary) Remarks

0x00 (00000000) COPYLA 0x04 (00000100)

0x01 (00000001) 0x00 0x00 (00000000) Outputs

0x02 (00000010) PINDIR 0xC6 (11000110)

0x03 (00000011) 0x03 0x03 (00000011) A and B pins

Caution: Any pin configured for input must not be allowed to "float" at an indeterminate
voltage level. Use an external pull-up/down resistor if necessary.

Caution: Whenever the CPU is reset, the Expansion Port pins are reconfigured as low-driven
outputs. Be mindful of possible contention with external hardware.

Example 1: Configure the Expansion Port A pin as output.

Example 2: Configure the Expansion Port B pin as input.

Example 3: Configure the Expansion Port A and B pins as outputs.

Example 4: Configure the Expansion Port A and B pins as inputs.

Address Hex (Binary) Instruction Machine Code Hex (Binary) Remarks

0x00 (00000000) COPYLA 0x04 (00000100)

0x01 (00000001) 0x03 0x03 (00000011) Inputs

0x02 (00000010) PINDIR 0xC6 (11000110)

0x03 (00000011) 0x03 0x03 (00000011) A and B pins

Using the Debug Monitor
The Digirule 2U has a built-in debug monitor that provides the following functions:

Display memory
Disassemble memory
Edit memory
Fill memory
Load memory (from a non-volatile memory file)
Save memory (to a non-volatile memory file)
Display registers
Edit Accumulator
Edit breakpoint
Edit Program Counter
Run/stop program
Single-step program
Reset CPU

To start the monitor, with the Digirule 2U in Stop mode, press and hold the Load button, then
press the Store button. The Digirule 2U enters Monitor mode. The usual memory editing and
CPU control button functions are disabled.

This mode can be cancelled by pressing the Run/Stop button or selecting Quit at the monitor
prompt, and the Digirule 2U enters Stop mode.

Tip: Because the monitor itself requires use of the Comm Port to interact with the user on
the terminal, its use is not recommended for debugging programs that perform terminal
input using the COMIN instruction.

Note: The Comm Port configuration is 9600 baud, 8 data bits, no parity, 1 stop bit.

Monitor Functions

The menu shows the list of functions provided by the monitor, and the associated shortcut keys to
initiate them. The build date of the firmware is also shown here.

Digirule 2U Debug Monitor | 22 Sep 2020

 D - Display Memory

Display Memory

This function displays the entire memory address space in both hexadecimal and ASCII formats.
Once started, you can stop the display prematurely by pressing any key. An asterisk * appears to
the left of the memory location currently pointed to by the Program Counter.

 I - Disassemble Memory

 E - Edit Memory

 F - Fill Memory

 L - Load Memory

 V - Save Memory

 R - Display Registers

 A - Edit Accumulator

 B - Edit Breakpoint

 P - Edit Program Counter

 G - Go (Run)

 S - Step

 Z - Reset CPU

 ? - Display Menu

 Q - Quit

>

> Display Memory

 00 *02 01 05 20 06 09 00 26 00 FC 28 02 C0 1E 06 28 |... ...&..(....(|

 10 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

 20 0D 0A 20 5F 20 20 5F 20 20 20 20 20 5F 20 5F 20 |.. _ _ _ _ |

 30 20 20 20 20 20 5F 5F 20 20 20 20 20 20 5F 5F 20 | __ __ |

 40 20 20 20 20 20 20 5F 20 20 20 20 5F 20 20 20 5F | _ _ _|

 50 20 0D 0A 7C 20 7C 7C 20 7C 5F 5F 5F 7C 20 7C 20 | ..| || |___| | |

 60 7C 5F 5F 5F 20 20 5C 20 5C 20 20 20 20 2F 20 2F ||___ \ \ / /|

 70 5F 5F 20 5F 20 5F 7C 20 7C 5F 5F 7C 20 7C 20 7C |__ _ _| |__| | ||

 80 20 7C 0D 0A 7C 20 5F 5F 20 2F 20 2D 5F 29 20 7C | |..| __ / -_) ||

 90 20 2F 20 5F 20 5C 20 20 5C 20 5C 2F 5C 2F 20 2F | / _ \ \ \/\/ /|

 A0 20 5F 20 5C 20 27 5F 7C 20 2F 20 5F 60 20 7C 20 | _ \ '_| / _` | |

 B0 7C 5F 7C 0D 0A 7C 5F 7C 7C 5F 5C 5F 5F 5F 7C 5F ||_|..|_||____|_|

 C0 7C 5F 5C 5F 5F 5F 2F 20 20 20 5C 5F 2F 5C 5F 2F ||____/ _/_/|

 D0 5C 5F 5F 5F 2F 5F 7C 20 7C 5F 5C 5F 5F 2C 5F 7C |___/_| |___,_||

 E0 20 28 5F 29 0D 0A 00 00 00 00 00 00 00 00 00 00 | (_)............|

 F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

Disassemble Memory

This function disassembles memory starting at the specified address (default is the address in the
Program Counter).

Edit Memory

This function allows you to inspect and/or modify memory starting at the specified address. To
change the data contained in the memory location, type in the new data value. The address will
automatically advance to the next location. To advance to the next location without changing the
current data, press the space key. When you are finished editing, press the return key.

Fill Memory

This function fills memory from the specified start address to (and including) the specified end
address with the specified data value.

> Disassemble Memory | Address (default=PC) ?

 00 SPEED 01

 02 COPYLR 20 06

 05 COPYRA 00

 07 BTSTSC 00 FC

 0A JUMP 02

 0C COMOUT

 0D INCR 06

 0F JUMP 05

 11 HALT

 12 HALT

 13 HALT

 14 HALT

> Edit Memory | Address? 00

 00=02 ?

 01=01 ? 08

 02=05 ?

 03=20 ?

 04=06 ? 07

 05=09 ?

 06=00 ?

> Fill Memory | Start address? 00 | End address? FF | Data? 55

Load Memory

This function loads memory from the specified non-volatile memory file.

Save Memory

This function saves the current contents of memory to the specified non-volatile memory file.

Display Registers

This function displays the contents of the following registers

Program Counter
Status Register (including the individual bits within)
Accumulator
Stack Pointer (0 means the stack is empty)

and disassembles the instruction at the memory location pointed to by the Program Counter, i.e.
the next instruction to be executed.

Edit Accumulator

This function allows you to inspect and/or modify the contents of the Accumulator.

Edit Breakpoint

This function allows you to inspect and/or modify the breakpoint address. When the monitor is
running a program and the Program Counter reaches this address, the program is stopped and
the current register contents are displayed. To disable the breakpoint, set it to FF .

Edit Program Counter

This function allows you to inspect and/or modify the address in the Program Counter.

> Load Memory | Location (0-7) ? 0

> Save Memory | Location (0-7) ? 0

> Display Registers

PC=00 | SR=00 ... | AC=00 | SP=00 | @PC=SPEED 01

> Edit Accumulator | AC=00 | Data? FF

> Edit Breakpoint | BP=FF | Address (FF=disable) ? 10

> Edit Program Counter | PC=00 | Address? 20

Go (Run)

This function starts the CPU. Execution begins at the address in the Program Counter. Press any
key to stop the CPU. The register contents at the stopping point are automatically displayed. To
resume execution, issue Go again.

Step

This function single-steps the CPU (i.e. executes a single instruction, then stops). The register
contents are automatically displayed.

Reset CPU

This function resets the CPU, including the following items:

Address LED blanking is disabled
The Stack Pointer is reset to the top of the stack
The Program Counter is reset to 0
The Status Register is reset to 0
The Accumulator is reset to 0
The instruction execution interval (speed) is reset to 0 (maximum speed)
The Expansion Port pins are returned to their default state (low outputs)

This is the most reliable way to restart a program.

Display Menu

This function redisplays the monitor menu.

> Go

 _ _ _ _ __ __ _ _ _

| || |___| | |___ \ \ / /__ _ _| |__| | | |

| __ / -_) | / _ \ \ \/\/ / _ \ '_| / _` | |_|

|_||____|_|____/ _/_/___/_| |___,_| (_)

Stop

PC=05 | SR=00 ... | AC=20 | SP=00 | @PC=COPYRA 3C

> Step

PC=07 | SR=00 ... | AC=20 | SP=00 | @PC=BTSTSC 00 FC

> Reset CPU

PC=00 | SR=00 ... | AC=00 | SP=00 | @PC=SPEED 01

Quit

This function exits the monitor, and the Digirule 2U enters Stop mode.

Using the Expansion Port
The Digirule 2U Expansion Port is a 10-pin connector pad located in the lower-right corner of the
board. It features three distinct electrical interfaces:

UART
Pin I/O
ICSP

UART Interface

The UART interface (Rx and Tx pins, and GND) provides standard full-duplex serial data
communication with similar external devices, and is compatible with 3-volt logic levels^1^. The
receive (Rx) input has a built-in pull-up resistor to keep it in the Mark (idle) state when not driven
externally.

This interface works in tandem with the USB interface. Data sent from the microcontroller is
simultaneously transmitted on both interfaces. Data received on either interface is combined and
sent to the microcontroller as a single data stream. All Comm Port-based functions that work on
the USB interface (including COMOUT , COMIN and COMRDY instructions, loading or saving RAM in
hex format, using the Debug Monitor, and installing firmware updates) will work equally well on
the UART interface.

Caution: Simultaneous reception on both USB and UART interfaces is not supported and will
result in data corruption.

Tip: Two Digirule 2Us may communicate with each other using a simple three-wire
connection between their UART interfaces. Connect Rx1 to Tx2, Tx1 to Rx2, and GND1 to
GND2.

Note: The Comm Port configuration is 9600 baud, 8 data bits, no parity, 1 stop bit.

Pin I/O Interface

The Pin I/O interface (A and B pins, and GND) provides bi-directional digital communication with
external hardware, such as LEDs or switches, and is compatible with 3-volt logic levels^1^. This
interface works in conjunction with the PINOUT , PININ and PINDIR instructions. Each pin can be
individually (or both pins can be simultaneously) configured to be input or output, high or low.
Both pins are configured as low-driven outputs whenever the Digirule 2U CPU is reset. A pin
configured for output can also be read with the PININ instruction. Similarly, a pin configured for
input can also be written with the PINOUT instruction, but the latched level will not be driven onto
the pin until reconfigured for output. This makes it possible to implement an open-collector /

> Quit

open-drain / wired-OR circuit.

Caution: The pins are connected directly to the microcontroller and are not buffered in any
way. Use the same circuitry precautions as you would with any other microcontroller. There
are no pull-up resistors on either pin. If you configure either pin for input, ensure that
proper logic voltage levels are maintained at all times, and provide external pull-up resistors
if necessary. If you configure either pin for output, ensure that external circuitry is not also
attempting to drive the pin at the same time, and use proper current-limiting resistors if
necessary. The Expansion Port Vcc pin may be used to supply a limited amount of power to
external circuitry. In any case, do not source more than a combined total of 25 mA from the
Vcc, A and B pins or you risk damaging the Digirule 2U circuitry. That's roughly the current
consumption of just a single LED.

ICSP Interface

The ICSP (In-Circuit Serial Programming) interface is compatible with Microchip PIC programming
tools. If you intend to develop your own firmware for the Digirule 2U and have the necessary
equipment, this is the connection point for your development system.

^1^Caution: When the battery is the power source, the Digirule 2U Vcc voltage will decline
over time as the battery drains. External circuitry must be designed to accommodate this.
Typically this involves using the Digirule 2U Vcc pin as the voltage reference for external pull-
up resistors or logic-level translators. If the difference between Vcc and external signal drive
levels becomes extreme, it can lead to communication problems, or even damage to the
Digirule 2U circuitry.

Updating the Firmware
The Digirule 2U has a built-in firmware updater capable of installing new versions of firmware
without the need for special programming hardware. Firmware updates, when available, can be
downloaded from the Digirule 2U website, and will be supplied as a hex file.

Updating the firmware requires use of a software utility called udr2. This utility is available for
download from the Digirule 2U website for Linux, Mac and Windows operating systems. The udr2
utility works with the Digirule 2U to install the contents of the hex file into the proper memory
locations within the microcontroller.

Caution: Any programs you have saved to non-volatile memory files will be replaced with the
original sample programs during the firmware update process. Be sure to transfer any files
you want to keep to your computer for safekeeping prior to performing the update. You can
then restore them after the update.

To update the Digirule 2U firmware, perform the following steps:

1. Power off the Digirule 2U by turning off the power switch and disconnecting from USB.
2. Hold down the Goto and Load buttons.
3. Power on the Digirule 2U by turning on the power switch or connecting to USB. The Run and

Stop LEDs will alternately blink.
4. Release the buttons.

5. If not already connected to USB from Step 3, do so now.
6. Run the udr2 utility on your computer:

./udr2 < dr2u.firmware.vXX.hex /dev/ttyUSB0 ^2^
The process takes approximately one minute. When finished, the Digirule 2U automatically
restarts, and you will see the familiar startup animation on the LEDs.

7. The Digirule 2U is now ready for use. Disconnect from USB if desired.

^2^This example command line is for Linux. Substitute a command line appropriate for your
operating system. Please refer to the UDR2 Digirule 2U Firmware Updater User Manual for more
information.

	Digirule 2U User Manual
	Description
	Features and Specifications
	Overview
	Front Side
	Rear Side

	History
	Conventions Used in This Manual
	Operation
	Getting Started
	Modes of Operation
	Stop Mode
	Run Mode
	Comm Load Mode
	Comm Save Mode
	Monitor Mode

	Entering a Program
	Running and Stopping a Program
	Saving and Loading a Program

	Memory-Mapped Registers
	Status Register

	Instruction Set Summary
	Instruction Set Detail
	0x00 HALT
	0x01 NOP
	0x02 SPEED
	0x03 INITSP
	0x04 COPYLA
	0x05 COPYLR
	0x06 COPYLI
	0x07 COPYAR
	0x08 COPYAI
	0x09 COPYRA
	0x0A COPYRR
	0x0B COPYRI
	0x0C COPYIA
	0x0D COPYIR
	0x0E COPYII
	0x0F SWAPRA
	0x10 SWAPRR
	0x11 ADDLA
	0x12 ADDRA
	0x13 SUBLA
	0x14 SUBRA
	0x15 MUL
	0x16 DIV
	0x17 ANDLA
	0x18 ANDRA
	0x19 ORLA
	0x1A ORRA
	0x1B XORLA
	0x1C XORRA
	0x1D DECR
	0x1E INCR
	0x1F DECRJZ
	0x20 INCRJZ
	0x21 SHIFTRL
	0x22 SHIFTRR
	0x23 BCLR
	0x24 BSET
	0x25 BCHG
	0x26 BTSTSC
	0x27 BTSTSS
	0x28 JUMP
	0x29 JUMPI
	0x2A CALL
	0x2B CALLI
	0x2C RETURN
	0x2D RETLA
	0x2E ADDRPC
	0x2F RANDA
	0xC0 COMOUT
	0xC1 COMIN
	0xC2 COMRDY
	0xC4 PINOUT
	0xC5 PININ
	0xC6 PINDIR

	Using the Debug Monitor
	Monitor Functions
	Display Memory
	Disassemble Memory
	Edit Memory
	Fill Memory
	Load Memory
	Save Memory
	Display Registers
	Edit Accumulator
	Edit Breakpoint
	Edit Program Counter
	Go (Run)
	Step
	Reset CPU
	Display Menu
	Quit

	Using the Expansion Port
	UART Interface
	Pin I/O Interface
	ICSP Interface

	Updating the Firmware

