
© 2017 Subsystems

SUBSYSTEMS

Electronics Learning Module 2– Microprocessor Trainer

SubsySTEM

2

Table of Contents

Introduction .. 1

Objectives ... 2

Tools ... 3

Safety .. 4

Section 1: Microprocessor Basics .. 5

Internal Layout .. 5

Memory ... 5

INPUT/OUTPUT ... 6

Central Processing Unit (CPU) ... 6

Binary Counting .. 10

The Bit ... 10

Converting from Binary ... 11

Hexadecimal ... 12

Microprocessor Trainer ... 14

Section 2: Programming ... 19

Using TIA, AIA, AO, JMP .. 19

TIA – (Transfer Into ACCA) .. 20

AIA – (Add Into ACCA) ... 20

AO – (ACCA Output to LCD) .. 20

JMP – (Jump to Memory Location) ... 21

Program 1: Add Two Numbers ... 22

Using KIA .. 23

KIA – (Keypad Into ACCA) ... 24

Program 2: Display Key Pressed .. 25

Using XCH and DLAY ... 25

XCH – (Exchange ACCA/ACCB and ACCY/ACCZ) 25

DLAY – (Delay) ... 26

Program 3: Count from 0 to F and Recycle .. 27

Using TIY, AIM, INCY, M+, M- .. 28

TIY – (Transfer Into ACCY) .. 28

AIM – (Transfer ACCA Into Memory).. 28

INCY – (Increment ACCY) .. 29

M+ – (Add Memory to ACCA) ... 29

M- – (Subtract Memory from ACCA) ... 29

Program 4: Manipulate Memory Locations ... 30

Using MIA and SOND ... 31

MIA – (Memory Into ACCA) .. 32

SOND – (Sound Out) .. 32

Program 5: Play Music .. 33

Using SETN, RSTN, and CMY .. 35

SETN – (Set Number on LCD) ... 35

RSTN – (Reset Number on LCD) ... 35

CMY – (Compare ACCY) .. 35

Program 6: Count Using the LCD Number Output 36

Using NOUT and CMA .. 37

NOUT – (Number Out) .. 37

CMA – (Compare ACCA) .. 37

Program 7: A Simple Clock ... 38

Using ERRS, SHTS, LNGS and ENDS ... 41

ERRS – (Error Sound) .. 41

SHTS – (Short Sound) .. 41

LNGS – (Long Sound) .. 41

ENDS – (End Sound) .. 41

Program 8: Play Special Sounds .. 42

Programming Concepts .. 43

Machine Language ... 43

Assembly Language ... 44

High Level Languages .. 44

Computer Language Example .. 45

Using RAND, ASC1, and ASC2 .. 47

RAND – (Random Number) .. 47

ASC1 – (ASCII1 out to LCD) .. 47

ASC2 – (ASCII2 out to LCD) .. 47

Program 9: Guessing Game ... 48

Using SHFT AND CLRA ... 52

SHFT – (Shift ACCA) .. 52

CLRA – (Clear ASCII) ... 53

Program 10: Odd or Even ... 53

Using CMPL and RSTO .. 55

CMPL – (Compliment ACCA) ... 55

RSTO – (Reset Output) .. 55

Program 11: The Compliment of an Input .. 55

Using CHNG ... 56

CHNG – (Exchange Accumulators) .. 56

Section 3: Writing Programs ... 58

The Concept ... 58

The Outline ... 59

Resource Allocation .. 59

Flow Chart ... 60

Assemble the Program .. 62

Compile the Program .. 63

Program 12: Computer Dice ... 63

2 Last Tips .. 66

Conclusion .. 66

Sample Programs .. 67

Sample 1: Rock/Paper/Scissors .. 67

Sample 2: Electronic Piano ... 69

Sample 3: Centipede... 69

Sample 4: Binary to Hex Practice ... 70

Sample 5: Roulette ... 71

APPENDIX A: ASCII TABLE OF CHARACTERS 73

APPENDIX B: Program Sheet .. 74

1

Introduction

You can’t go anywhere now without being near computers. This might be in

part because you carry one around in your pocket. But computers have a

pretty humble beginning. You may have heard that computers speak in “ones

and zeros.” But what does that mean? And why is it possibly important to

know the inner workings of a computer. Modern computer architecture (the

hardware) and programming (software) has been developed over time but

stems from these humble beginnings. By understanding a very early

implementation of a computer, it makes it easier to understand the operation

and programming paradigms that exist today in these systems. It is also a fun

way to learn computer history. Finally, at its core, computer programming is a

method to logically instruct a computer on how to execute a desired sequence

of calculations. By studying this, it helps our minds grow in their ability to

logically assemble data into meaningful ideas.

Intro

2

Objectives

This SubsySTEM unit is designed to give you a basic understanding of

computer structure and programming and offer some hands on experience with

a simple, machine-language programmed 4-bit computer. Below is a list of the

primary objectives of this unit:

After completion of this unit, the student will:

1. be able to explain the parts of a microprocessor to include the input,

output, memory, arithmetic logic unit and the central processing unit.

2. understand the concept of computer memory including the

distinctions between RAM, ROM, EPROM, Registers, and Accumulators.

3. understand how to read a flow chart and how it may be converted to a

computer program.

4. understand the basics of the binary number system and be able to

represent base 10 numbers in binary.

5. program a 4-bit computer with simple programs.

6. understand computer commands used in manipulating data in a

computer.

7. understand the allocation and use of computer memory.

8. create new programs and enter them into the computer.

Programming computers can be an immensely challenging and rewarding

endeavor. A single computer can be used for an unbelievable amount of

different tasks. On the other hand, computer programs are just sets of on and

off signals (ones and zeros), and if one of these bits of data is wrong, the

computer usually doesn’t function properly. For that reason, they can drive

people crazy and be the source of great frustration. During this study, I

encourage you to experiment, learn, and have fun. But, if you find yourself

getting very frustrated, take a break. Often, when you return to a task

refreshed, you can see problems and solutions more easily.

3

Tools

To accomplish these objectives, you have a few tools.

First, you have this curriculum guide. It will walk you step by step through the

entire curriculum that includes the text and the lab exercises. It will introduce

you to the concepts of computers, number systems, programming, and

moving ideas into code.

You also have a 4-bit microprocessor. This is a fully programmable computer

(programmed in machine language) that has a keyboard input, and a screen

and speaker for output. The following picture shows the layout of the main

parts of the computer board and describes their functions.

The Microprocessor: This is the heart of the computer. It has all of the

computing, processing, and input/output interfaces needed to run programs.

The LCD: This is a 2 line by 8 character display used to guide the user in

programming the microprocessor and displaying information from running

programs.

4

The Keypad: This is used to enter programs, execute functions, and take input

during program execution.

Speaker: This generates tones and short preloaded sounds.

Power Connector: This is a micro USB connector that is used to power the

board (This is only a power connection. No data is sent via the USB port).

Contrast Adjust: Using a small screwdriver you can adjust the contrast of the

LCD. This is only included on boards with a variable contrast LCD display so it

may or may not be present on your board.

Safety

Because the computer runs off of 5 volts from a USB power supply, there is no

risk of electric shock. However, because of the exposed circuitry, there are a

couple of safety precautions.

1) Do not sit the computer down on conductive material like metal. This has

the potential to short out circuits and could damage the computer.

2) Some electrical components and the solder used to fuse them to the board

may contain small amounts of lead. Wash your hands after handling.

Alright, with that introduction out of the way, let’s get started on learning

about computers.

5

Section 1: Microprocessor Basics

To understand how a computer works on the most basic level, we first have to

understand some vocabulary and definitions.

Internal Layout

Most computers are made up of the same basic components. Below is an

explanation of the main parts.

Memory

The memory in a computer is normally made up of two parts:

Random Access Memory (RAM): This is memory used for the saving and

retrieving of data. It can contain programs, numbers, words, or places to

temporarily hold information needed by the computer. It is typically what is

called “volatile” memory because the data in RAM is not saved when power is

removed.

Read Only Memory (ROM): This is memory that can be read from at any time

but can only be written to once. It is considered “non-volatile” because it

retains its data even if power is removed. It is often used for storing programs

in devices that need to have a master program available as soon as they are

turned on. You will find these in vending machines, cell phones, home

computers, and just about everything that is operated by computer.

It is interesting to note that ROM has changed as technology has changed.

Early ROM memory chips were programmed with a high voltage (higher than

normal operating voltage). Some had a transparent window on top which

Section

1

6

exposed the memory circuit to light. You could then erase this chip with a

dose of high intensity ultra-violet light and program it again. These were

referred to as Erasable Programmable Read Only Memory (EPROM). As

technology continued to improve, we gained the ability to erase and program

our ROM chips electronically. This meant we didn’t need to remove the chip

from the board and place it under light. We could just erase and reprogram it

while it was still in the circuit. This process is called “In-System Programming”

and is abbreviated ISP. These chips were referred to as “Electronically Erasable

Programmable Read Only Memory” or EEPROM (often referred to as E-E-

PROM, Double-E PROM, or E-squared PROM).

A very common type of non-volatile memory today is Flash Memory. You may

have heard the term flash drive to describe a small USB drive (or thumb drive).

Flash was developed from EEPROM but it has an advantage. EEPROM normally

needs to erase the entire contents of memory and program the entire

memory in one operation. Flash memory allows you to erase and write smaller

sections (called blocks or pages). Some Flash will even let you read and write a

single memory location. We have come a long way in the realm of computer

memory.

Your microprocessor trainer has both ROM and RAM. The ROM stores

routines for operating the processor like reading the keyboard, running the

LCD, and making sounds. You also have RAM. You will load this area of

memory with your program and any data you may need.

INPUT/OUTPUT

Input/output is the generic term to indicate the components used to send

information to the internals of the processor and to take results from the

processor and make them available to external circuits. For our computer, we

have a keyboard to input information into the computer and have a display

and speaker to get information from the computer.

Central Processing Unit (CPU)

The CPU is the brains of the computer. It is responsible for fetching

instructions from memory, keeping track of where we are in the program,

controlling the flow of information to input and output systems, timing

functions, and sending data to other sections to perform arithmetic

7

operations. Let’s look at a typical depiction of a CPU with its supporting

components.

Below is a description of some of the key parts:

First, let’s define a register. A register is a quickly accessed memory location

that is available to the CPU. It is a working storage location for holding data or

setting different functions within the CPU.

Program Counter (PC): The PC is a register that holds the memory address

location of the next instruction to be executed. The program counter is used

to keep track of where we are in our program. We will be able to use the

JUMP command later to change the value of this register and pick up program

execution from a new memory location.

Accumulator A, B, Y, and Z: An accumulator is a type of register. It is used as

the main storage location that data is written to, manipulated, and sent to

other parts of the computer. We use accumulators A and Y to do these

functions and accumulators B and Z to act as temporary storage for A and Y.

8

Arithmetic Logic Unit (ALU): The ALU is a section of the CPU that performs

math and certain logical functions on the A and Y registers. We will use the

ALU frequently in our programming and it is one of the most powerful

components of a computer.

ROM: This is the memory that has already been programmed into your

computer. It contains the routines for operating the inputs and outputs and

initializes the computer when you boot up. You do not have access to this

memory.

RAM: This is a memory bank of 256 bytes of memory space for data. This is

the memory you will write into when you program. The first 240 bytes of this

storage is for your program. The last 16 bytes are a memory location that you

can store data in for use in your program.

EEPROM: You also have 512 bytes of EEPROM. You can use this to save or load

a program into memory. This memory will hold its contents even if power is

removed. This allows you to save your work and continue it at a later time or

to save a long program that you don’t want to have to type in again. There are

two banks (bank 1 and bank 2) that you can use to store two different

complete copies of system memory.

Flag Register: The flag register holds a single bit of information. For some of

the program commands, there is a condition that results from performing the

command that we want to test. For instance, we may want to compare a

number with the contents of the A accumulator. If the number is equal, we

may want to take some action and if the number is not equal, we may want to

do a completely different action. When an operation wants to send this

conditional information to our program, it will use the flag register.

Commands will then use this flag value to determine where to continue

program execution. When an instruction executes, the flag operates as

follows:

FLAG = 1: The next instruction in memory is executed. (This is the default

condition)

FLAG = 0: If the next instruction is a JMP or CAL instruction, that instruction

is skipped.

9

The FLAG is then used to change the path of code execution depending on

certain conditions. For example, the instruction INCY (increment ACCY) will

add 1 to the Y accumulator each time it is executed. When ACCY gets to 15,

the next INCY will overflow the ACCY because it can only hold numbers 0-15.

ACCY will roll over to 0 and the FLAG will be set to 0. If this happens, the next

instruction (if it is a JMP or CAL instruction) will be skipped. Below shows how

this works in our code.

If the instruction that follows is not a JMP or CAL command, the next

instruction is executed regardless of the FLAG value. Your instruction

information card has a column that shows which instructions and what

conditions are required to set the FLAG to zero. You will see this in action

when we get to writing programs.

Address Bus: These are lines from the CPU to various components to convey

the digital information about what address in memory we want to access.

We are close to powering up our computer and starting programming. We just

need to cover a few more basics.

Jump Command
Call Command

Next

Instruction

FLAG=0

FLAG=1 Execute

instruction that

changes FLAG

10

Binary Counting

We communicate with words, sounds, and gestures. As sophisticated as

computers are, they really do just communicate in ones and zeros. Computers

are made up of millions of transistors and these transistors are like switches.

They have two possible conditions; on or off. By combining multiple switches

together, we can build a number system that the computer can then use to

operate.

The Bit

A bit is the smallest information that a computer can store. It is a single on/off

state. So 1-bit can have two different possible states; 1 and 0. But let’s look at

a 2-bit system.

Since each bit can have two states, they can

each be one or zero, so both together create 4

unique states (00, 01, 10, 11). So if we wanted

to count to 3, we could use 2 bits to do it.

It is important

to remember

that counting systems start at zero so they

always count up to one number less than the

number of states. If you were asked to count

in binary to 4, you would have to include one

more bit to do it (you would need 3 bits total).

Let’s see how far we get with 3 bits. You can

see something interesting from the table. We

only added 1 bit but we have doubled the

amount of states (we now have 8 unique

states). In fact, every bit we add will double

the total number of states. There is actually a mathematical relationship

between the number of bits and the number of states:

BIT 1 BIT 2 State Number

0 0 0

0 1 1

1 0 2

1 1 3 BIT 1 BIT2 BIT3 State
Number

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

11

So for our 4-bit data binary computer,

So, we can store numbers from 0 to 15 on our 4-bit computer.

Converting from Binary

The way a binary number works is the same way our base 10 number system

works. Look at the number 275 and how we represent it.

We have all known from our earliest lessons on counting that there is a one’s

column, a 10’s column, a 100’s column, etc. Because we use a decimal system,

all of our place holders are multiples of 10. All other base systems work the

same way. Binary is a base 2 system so all of the placeholders will be multiples

of 2. Let’s look at what these placeholders look like.

Digit Digit 5 Digit 4 Digit 3 Digit 2 Digit 1

Multiplier 16 8 4 2 1

Notice, just like base 10, as we move to the higher digits, we multiply the

previous number by the base (2). Because this is base 2, we can only have a 0

or 1 in each digit location. So what is the decimal value of the binary number

1101? Solve it like the way we broke down the base 10 number above.

So the number 1101 in binary is actually 13 in decimal. We can use this same

procedure for converting from base 10 to binary. What is the decimal number

11 converted into binary?

Here we can look at the placeholder values in binary and see how to fit our

number into its allowed values. From the chart you can see that the fifth digit

represents a value of 16. This is too high for our number (11) so let’s try the

12

next smallest digit. Digit 4 represents a value of 8. There is definitely an 8 in 11

so we will start our conversion at that point showing a 1 in that digit position.

Since we have used up 8 of our initial 11, we are left with 3. The next digit

represents a value of 4 which is bigger than our 3 so we will report no 4s. The

next digit represents a value of 2. We definitely have a 2 in our 3 so we will

report a 1 in this digit. Since we used 2 of our remaining 3, we only have 1 left.

The last digit represents the 1’s column so we can report the 1 we have left.

The whole number is then constructed as follows:

So if we pull off these 1s and 0s we get the binary number:

This is the same as saying this number is 1 eight, and 1 two, and 1 one. Add

them up and you get to 11. This is one method for converting between binary

and decimal. Today, it is pretty easy to go online and find numerous

calculators and apps that will do these conversions for you. It is good to

understand number systems when dealing with computers because it is often

necessary to represent numbers in different forms depending on how you

want to process data.

Hexadecimal

What I really want to discuss is base 16. This is what you will use to program

your microprocessor. The number system that uses base 16 is called

hexadecimal. Hexadecimal has 16 states, so based on our previous discussion

we can see that a 2-digit hexadecimal number can have 162, or 256 states.

That is the size of our RAM, so we can address any location in our memory

with a 2-digit hexadecimal number. One interesting thing to note is that a base

16 number has 16 possible numbers that are in each digit. The problem with

that is that we normally use base 10 for counting which only allows digits 0

through 9. We have no single digit that represents 10. We need a 1 and 0 to

do it (a 2-digit number). To solve this problem, we assign the first 6 alphabet

letters to represent numbers 10 through 15. This allows us to have a single

13

character represent what is normally a 2-digit number. Below is a table

showing these numbers.

Base 10

(Decimal)

Base 2

(Binary)

Base 16

(Hexadecimal)

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

It can be very strange to see letters in our numbers, but this is hexadecimal

and the way our computer can represent base 16 numbers. Let’s look at a

conversion to see how this works.

14

Convert 3A in hexadecimal to base 10 (decimal).

Like before, we know that the first digit is our 1’s place and the second digit is

our 16’s place. Then we just construct the number from the digits displayed:

If you were to express this number in base 16 you might say that it is 3

sixteens and 10 ones.

If you look at your keyboard on the microprocessor, you will see that, in

addition to some command keys, you have keys labeled 0 through F. This is

how you will enter hexadecimal numbers into the computer.

Ok, that is the last time I will say hexadecimal. People who use computers and

program a lot will just refer to base 16 as hex. So that’s what we will do from

here on out.

Your computer uses a 4-bit data bus and an 8-bit address bus. This means we

can express the data with 1 hex digit and the address with 2 hex digits. The

computer you normally use probably has a 64-bit data bus. What number can

it count to?

That is 18,447,000,000,000,000,000 states. Wow that is a big number!

Microprocessor Trainer

Let’s look closer at your new computer. Your microprocessor trainer has the

following features:

Hex keypad Input: This is where you will enter data into your memory. This

data will represent your program and other information need by the program.

INCR Key: This key will increment the program counter in write mode to allow

you to easily enter a command and then advance to the next memory

location. It can also be used when the program is run to step through the lines

in your program one at a time.

15

RSET Key: This will reset the microprocessor and return the program counter

to 0.

ADDR Key: This key allows you to key in a 2-digit hex address and will advance

the program counter to that address and display the contents of the memory

at that address. You can use this to jump to some specific location when you

are programming or to access the upper memory locations to store data used

during program execution. Just press this key and then follow it with the two-

digit address (00-FF).

FUNC Key: This key gives you access to extended functions. The table below

lists these functions along with a description.

Function Name Description

0 RUN Runs your program

1 Step Run Runs your program one command at a time

2 BEEP ON Turns on a sound when a key is pressed

3 BEEP OFF Turns the key sound off

4 SAVE1 Save the program to EEPROM memory bank 1

5 LOAD1 Load the program from EEPROM memory bank 1

6 SAVE2 Save the program to EEPROM memory bank 2

7 LOAD2 Load the program from EEPROM memory bank 2

Display: The microcontroller uses a 2 row by 8 column display to show the

status of programming and as an output during run time. While programming,

the display will show the current address and contents of that address. During

run time, the top line will show the current program counter, any 4-bit data

you direct the program to display, and any text you program. The bottom line

will have 8 numbers that you can program to be on or off individually. These

can be used to display binary numbers or counting sequences.

16

In Program Mode the display will look like the following:

“Addr” stands for Address. This displays the current value of the program

counter which will point to the current memory location you are at. When you

enter a number from the keypad and press INCR, that value will be stored in

memory and the program counter will be incremented.

“Dat” stands for Data. This is the current value of the memory location shown

under “Addr.” When you press a key, that value will show up under “Dat” but

it will not be saved in memory until you press INCR.

17

In Run Mode, your display has certain areas that you can access with

instructions.

The Program Counter is always displayed on the first two spaces on the first

line. The other locations of output are shown above. Note that only output

you program will be seen on the display. When a program is run, the display is

initially cleared.

The items in parentheses indicate the instructions that write to that particular

screen location. You will see more about them later.

Speaker: A small speaker to play tones, special sounds, and beeps when the

keys are pressed if desired.

Power Connector: This is micro USB connection to power the microprocessor

board. Use the supplied cable and connect to a computer USB port or a USB

phone charger.

Microprocessor Reset: This is the small button on the microprocessor board

itself. If your microprocessor ever locks up, you can use this to reboot your

18

system. All of the program memory will be erased so you will lose anything

you were working on.

Whew, finally done with the information you need to get going. Let’s get into

some programming. We will introduce the commands in groups and use them

to build more and more complex programs.

Let’s go!

19

Section 2: Programming

Let’s power up the trainer. Plug one end of the included USB cable into the

power jack on your trainer and plug the other end into the USB port of your

computer or into a USB phone charger. Be careful not to force the connectors

into place. They should connect easily and feel secure when inserted.

The display will light and you will see the trainer boot up into Program Mode.

This is where you will enter computer commands into memory to create your

program. We’ll jump into this by introducing the first couple of commands.

Using TIA, AIA, AO, JMP

We have discussed the concept of an accumulator. The most important

accumulator in our computer is the A accumulator (I will refer to it as ACCA for

accumulator A). ACCA is a 4-bit accumulator so it can hold a single number

from 0 to 15. ACCA is attached to memory and the ALU so it is used constantly

in our programs to manipulate our data.

Let’s look at the first commands:

Section

2

20

TIA – (Transfer Into ACCA)

Description Load a number into ACCA

Machine Code 1

Operation nACCA

Flag 1

We will show this table every time we introduce an instruction. Here is what

the table entries mean:

Description: Quick explanation of what the instruction does.

Machine Code: The hex number or numbers that represents this instruction

Operation: A quick shorthand description of what the instruction does. In this

case, it takes a number (n) and loads it () into ACCA.

Flag: This will show you the condition of the flag after the operation is

complete. In this case, the flag is 1, which means the next instruction will be

run. If the flag has a condition that will set it to zero, it will be shown.

So that is the TIA command. It simply loads a number into ACCA.

AIA – (Add Into ACCA)

Description Adds a number to ACCA and stores the result in ACCA

Machine Code 3

Operation ACCA+nACCA

Flag 0 if carry (if the add creates a number greater than 15)

AO – (ACCA Output to LCD)

Description Displays ACCA on the LCD during Run Mode

Machine Code 0

Operation ACCALCD

Flag 1

21

Load “4” into ACCA

Add “2” to ACCA

Display ACCA on LCD

JMP – (Jump to Memory Location)

Description Loads an address into the Program Counter

Machine Code F

Operation nnPC

Flag 1

With these four instructions, we can create our first program. Let’s instruct

the computer to add the numbers 4 and 2 and display the result on the LCD.

Let’s first generate a flow chart to accomplish this. This will help us generate

our program.

From the flowchart, we can create our

program. Each line lends itself to one of the

instructions we have already introduced. The

first block tells us we want to load the

number 4 into ACCA. We need the TIA

instruction. The second block adds a number

to ACCA. That is the AIA instruction. The last

one displays ACCA on the LCD. This is the AO

instruction. This is a simple program, but it

illustrates well the kind of thinking we need

to do to write software. We want to add two

numbers together. We can’t just tell the

computer to do this. We have to use the instructions to the computer to

accomplish it. Let’s convert these commands into actual code:

22

Program 1: Add Two Numbers

Memory Location Command Machine Code Comment

00 TIA 1 Load 4 into ACCA

01 4

02 AIA 3 Add 2 to the value in ACCA

03 2

04 AO 0 Display ACCA on the LCD

05 JMP F End the program by just
repeatedly looping here

06 0

07 5

So our entire program fits into 8 memory locations. Notice the blank

Command entries for location 01, 03, 06, and 07. These are placeholders for

the data we need to input. When we use the instruction TIA, we need to tell

the computer what number to transfer into ACCA. The memory location

directly after the command is where the computer knows to retrieve this

number. This is true for the AIA instruction as well as many others. The

“Words” column on your instruction card lists how many memory locations

(words) the instruction takes. If you look at TIA, the card reports that it takes 2

words. That is one for the instruction, and one for the data needed by the

instruction.

Let’s enter this program into our trainer.

Start by hitting the RSET button. This stops operations, returns the Program

Counter (PC) to 0 and places the trainer in Program Mode.

Now, enter the first command of our program. This is the number 1 which

represents the command TIA. You will find all the commands to enter under

the Machine Code column. Press the 1 key. Notice that a “1” now shows on

the display under the “Dat” text. “Dat” stands for data and is the value of the

memory location.

To enter this data into memory, press the INCR button (Increment). When you

do this, the data will be stored in the current memory location, the PC will be

23

incremented, and the display will show the updated address and data of the

new address. The rest of the program will be entered in the same fashion.

If you make a mistake or need to go back, you can always press RSET and then

INCR up to the address you need. This is also how you can verify your program

one step at a time.

Now input the whole program: (press RSET first to start at 00)

1[INCR] 4 [INCR] 3 [INCR] 2 [INCR] 0 [INCR] F [INCR] 0 [INCR] 5 [INCR]

Remember to enter that last INCR. Just pressing a number doesn’t change the

memory location. You need to INCR to store the current data in the current

location.

Let’s run our program. First, press RSET. This is very important because the

run command starts from the current position of the PC. This allows us to run

different parts of our program, or even to run different programs stored in

memory. Our program starts at 00, so press RSET to set the PC at 00. Now we

can run the program.

Press FUNC and then 0. This runs the program in Continuous Mode. That

means that one instruction after another will be run continuously.

What does the display show? You should see the number 6 on the right side of

the display. That is the result of the addition in our program.

Let’s learn another command.

Using KIA

We need to have a way to enter information into our program during program

operation. KIA allows us to do that. It is a command that scans the keypad and

looks for a pressed key. If no key is pressed when the command is executed,

the flag will stay set to 1 and the next command will be executed. If a key is

pressed, the value will be transferred into ACCA and the flag will be set to

zero. We can then use this flag to keep jumping back to the KIA command

until a key is pressed. Let’s see this in action.

24

KIA – (Keypad Into ACCA)

Description Load a number from the keypad into ACCA

Machine Code 4

Operation kACCA

Flag 0 if a key is pressed

We’ll keep it simple again since this is just our second program. Let’s create a

program that will simply wait for us to press a key on the keypad and then

display the result on the LCD. As before,

we will start with a flow chart to help us

collect our thought and to visually see

the logic. We can then convert that

flowchart to commands the computer

can understand.

From the flowchart, we can create our

program. The first block tells us we want

to look at the keypad to see if a key was

pressed. Since the KIA instruction has

the ability to set the FLAG, we need to account for both possibilities we get

from this command. The next box does this. It is a decision box. It is diamond

shaped and gives us two possible routes to take. If a key is not pressed

(denoted by the NO path), we send the program back to look again for a

keypress. If a key is pressed (denoted by the YES path), we will display the

contents of ACCA to the LCD and then jump to the start of the program. Let’s

convert these commands into actual code:

Look for keypress

Display ACCA on LCD

Keypress?

NO

YES

25

Program 2: Display Key Pressed

Memory Location Command Machine Code Comment

00 KIA 4 Look for key press

01 JMP F Jump back to memory location
00 if no key is pressed

02 0

03 0

04 AO 0 If you get here, a key was
pressed so output it to the

display

05 JMP F Jump back to the beginning

06 0

07 0

Enter this program. Remember, start by pressing RSET to reset the computer

and place the PC at 00. Enter by pressing the following:

4 [INCR] F [INCR] 0 [INCR] 0 [INCR] 0 [INCR] F [INCR] 0 [INCR] 0 [INCR]

Remember that last [INCR] to store the final instruction. Now run the program

by pressing [RSET], [FUNC], then 0. You should now see any number you press

on the keypad show up on the display.

Using XCH and DLAY

Let’s take a look at two more instructions.

XCH – (Exchange ACCA/ACCB and ACCY/ACCZ)

Description Switch the values in the A and B accumulators
and the Y and Z accumulators

Machine Code 2

Operation ACCAACCB and ACCYACCZ

Flag 1

26

DLAY – (Delay)

Description Delay program execution based on ACCA

Machine Code E0

Operation Delay (sec) = 0.1 * (ACCA + 1)

Flag 1

ACCA is a very busy accumulator. Many of the instructions use it as a

reference for their operation. Because of this, it is handy to have a temporary

place to hold the contents of ACCA while we need it to do other things with it.

That is what the XCH instruction is for. It swaps the contents of the A and B

accumulator. The sole function of the ACCB is to temporarily hold the contents

of ACCA. XCH also swaps ACCY and ACCZ at the same time.

There are also sometimes in our program where we want to slow the program

execution. The computer executes instructions very rapidly. If we want to

display information to the user, we may

need to wait to give the user a chance to

read it.

Let’s write a program to count from 0 to F

and then recycle. Here is what the flow

chart may look like:

In order to create a delay, we need a

number in ACCA. But we also need ACCA to

track the current count we are on. This is

where ACCB will come in handy. We will

load the delay value in ACCB and then just

exchange ACCA and ACCB when we need to.

After we put the value 4 into ACCA and

exchange it into ACCB, we load ACCA with

our starting number, 0. We then display the

value in ACCA. Here is where we want our

delay so the user can actually see this count

before it changes. We exchange ACCA and

ACCB to save the value in ACCA and to load

Set ACCA to 4

Display ACCA on LCD

ACCA

overflow? YES

NO

Exchange ACCA and ACCB

Set ACCA to 0

Delay

Exchange ACCA and ACCB

Add 1 to ACCA

Exchange ACCA and ACCB

27

the delay value into ACCA. We then call the delay routine and the exchange

ACCA and ACCB again to restore ACCA to the current count. We add 1 to ACCA

and look to see if there is an overflow (ACCA>15). If there is none, loop back

and display the new number. If there is an overflow, loop back to where we

set ACCA to 0 so we can start the count again from there. Let’s convert this

flow chart to a program.

Program 3: Count from 0 to F and Recycle

MEM Cmd MC Comment

00 TIA 1 Load 4 into ACCA as our delay factor

01 4

02 XCH 2 Switch ACCA and ACCB

03 TIA 1 Load 0 into ACCA so the count starts there

04 0

05 AO 0 Display ACCA

06 XCH 2 Switch ACCA and ACCB so the delay value is in
ACCA

07 DLAY E Call the Delay routine

08 0

09 XCH 2 Switch back so ACCA has the current number

0A AIA 3 Add 1 into ACCA to increment the count

0B 1

0C JMP F If there is no overflow, jump back to display
new number

0D 0

0E 5

0F JMP F If there is overflow, jump back to where we
set ACCA to zero

10 0

11 3

You can now enter this program. Remember to RSET first.

28

[RSET] 1 [INCR] 4 [INCR] 2 [INCR] 1 [INCR] 0 [INCR] 0 [INCR] 2 [INCR] E [INCR]

0 [INCR] 2 [INCR] 3 [INCR] 1 [INCR] F [INCR] 0 [INCR] 5 [INCR] F [INCR] 0

[INCR] 3 [INCR]

 (make sure to remember that last [INCR] to save the last instruction)

Now run the program by pressing: [RSET] [FUNC] 0

You should see the numbers 0 to F appear in the ACCA output segment of the

display. When the count gets to F, you should see it recycle back to 0 and start

the count again. If you don’t see this, check your program. The easiest way to

do this is to [RSET] the computer and [INCR] through the memory locations

while comparing the data to the needed program values.

Using TIY, AIM, INCY, M+, M-

Let’s take a look at a few more instructions.

TIY – (Transfer Into ACCY)

Description Transfer a value into the Y accumulator

Machine Code 9

Operation nACCY

Flag 1

AIM – (Transfer ACCA Into Memory)

Description Transfer the value in ACCA to the memory
location pointed to by ACCY

Machine Code 5

Operation ACCAM[ACCY]

Flag 1

29

The upper 16 memory locations (addresses F0 thru FF) are for your use to

store data. We will use it to pre-store data for programs and as a holder for

data we will need later. AIM will load whatever data is in ACCA into the

memory location pointed to by ACCY. That means if you want to load data into

memory location F3, you load 3 into ACCY and execute the AIM instruction.

The instruction will load the contents of ACCA into memory location F3.

INCY – (Increment ACCY)

Description Add 1 to ACCY. If ACCY >15, assign ACCY to 0

Machine Code A

Operation ACCY+1ACCY

Flag 0 if carry

M+ – (Add Memory to ACCA)

Description Add the data in memory location pointed to by ACCY into ACCA

Machine Code 7

Operation ACCA + M[ACCY]ACCA

Flag 0 if carry

M- – (Subtract Memory from ACCA)

Description Subtract data in memory location pointed to by ACCY from ACCA

Machine Code 8

Operation ACCA – M[ACCY]ACCA

Flag 0 if negative (result is a negative number)

The M- instruction is used for performing subtraction operations. If the value

at the memory location is less than or equal to ACCA, then the result of ACCA-

M[ACCY] operation will be a positive number or zero. If M[ACCY] is bigger,

then the result will be a negative number. Computer hardware and software

have ways to handle negative numbers. For our computer, we are going to

adopt a scheme where we subtract the resulting negative number from 16

and store it in ACCA. This is so the M+ and M- complement themselves. If

30

ACCA is 0 and we execute the M- instruction to subtract 1 from ACCA, this will

result in an ACCA value of 15 (16-1). This is good, because if we then M+ and

add 1 to ACCA, we get back to 0. Both of these will set the FLAG to zero so you

can test for the carry (M+) and the negative number (M-).

Let’s use these new instructions to learn some different concepts of memory

manipulation. Our program will:

1. Transfer 5 to ACCA

2. Save ACCA to M[0] (memory location zero, or F0 in hex)

3. Add 3 to ACCA

4. Save ACCA to M[1] (memory location one, or F1 in hex)

5. Add M[0] to ACCA

6. Save ACCA to M[2] (memory location two… you get the point)

7. Subtract M[0] from ACCA

8. Print ACCA

At the end of running this program, the display should read 8 and the memory

locations should have the following values:

M[0] = 5, M[1] = 8, M[2] = 13

Let’s create this program and see if that is what we get.

Program 4: Manipulate Memory Locations

MEM Cmd MC Comment

00 TIA 1 Load 5 into ACCA

01 5

02 TIY 9 Set ACCY to point to M[0]

03 0

04 AIM 5 Transfer ACCA to memory M[0]

05 AIA 3 Add 3 to ACCA

06 3

07 INCY A Increment Y to point to the next location. We
won’t let ACCY overflow, so we don’t need to

handle that possibility here.

31

08 AIM 5 Transfer ACCA to M[1]

09 TIY 9 Have ACCY point to M[0]

0A 0

0B M+ 7 Add M[0] to ACCA

0C TIY 9 Set up ACCY to point to M[2]

0D 2

0E AIM 5 Transfer ACCA to memory M[2]

0F TIY 9 Set up ACCY to point to M[0]

10 0

11 M- 8 Subtract M[0] from ACCA

12 AO 0 Print ACCA to LCD

13 JMP F End the program by just looping here

14 1

15 3

Enter the program: (remember the increments after each entry)

 1,5,9,0,5,3,3,A,5,9,0,7,9,2,5,9,0,8,0,F,1,3

When you run the program ([RSET], [FUNC], 0) you should see an 8 on the

display. Now we want to check the memory locations. Press [RSET] to stop

program execution. The user memory starts at F0, so press [ADDR] and then F

and 0. The display will now show the address F0 and the value at that address

which should be 5. Press [INCR] to see address F1. It should be 8. Press [INCR]

one more time to show D (decimal 13) as the value for F2. By using the [ADDR]

function we can view the value of any memory location (program and user

memory). This will allow us to preposition data for use in our program as well

as see the results of calculations. Let’s make a program that requires us to

load data into memory before program execution. Let’s make some music!

Using MIA and SOND

Let’s take a look at a few more instructions.

32

MIA – (Memory Into ACCA)

Description Transfer the value in the memory location
pointed to by ACCY to ACCA

Machine Code 6

Operation M[ACCY]ACCA

Flag 1

SOND – (Sound Out)

Description Play a note based on the value in ACCA

Machine Code E5

Operation SOUND[ACCA]SPKR

Flag 1

Let’s create a program that takes pre-loaded notes in memory and plays them

on the speaker.

33

Program 5: Play Music

MEM Cmd MC Comment

00 TIY 9 Set ACCY to point at the first memory location

01 0

02 MIA 6 Transfer the value of memory to ACCA

03 SOND E Play the note for the value of ACCA

04 5

05 INCY A Increment to the next memory location

06 JMP F More notes to play, jump back to play them

07 0

08 2

09 JMP F If INCY causes a carry, you are out of memory. Jump
in a loop to stop program

0A 0

0B 9

Enter the above program using the usual method entering and incrementing

the values in the “MC” column but don’t run it yet. Our program is going to

cycle through the 16 user memory locations and play the notes associated

with each value. That means we want to load notes into memory. Do this by

pressing [ADDR] then F then 0. You are now pointed at the first memory

location. Just like entering program data, user data is stored the same way.

Have fun randomly entering values into memory by selecting a number on the

keypad and then pressing [INCR] until you finish at address FF and it resets you

back to the beginning of program memory (so stop and don’t write over your

program!).

Now that you have entered your song, run the program (press [RSET] [FUNC]

0). You should hear your song play and stop at the end. If you want to

continuously repeat, you could change the JMP address at 0B to 2. This would

jump back to the start instead of just cycle on itself.

Change up the memory and try different songs. This exercise has showed that

the computer sees its program instructions and user memory as the same

thing. It is up to the user to keep track of what is what when you program on

34

the machine language level. When you use high level languages, you can

instruct the computer to do a lot of this memory management for you. For

instance, you may create a “variable” called “Value” and then assign it various

numerical values. The computer would then assign a memory location and use

that location anytime your program assigns a value to or reads a value from

your variable “Value.”

We also talk about ACCY “pointing to” memory locations. This is another very

common high level language use. A pointer holds the memory address of a

variable. If I ask my program to retrieve the value in a variable I use the

variable name. If I want my program to give me the memory location of this

data, I ask for the pointer to that variable. We often need to do this because

an operation requires the address and not the data. In our computer, ACCY

points to our memory location F0-FF. M+, M-, AIM, and MIA all use this

pointer to locate which memory location to put or pull data to/from.

The bottom row of the display is used to create an 8-bit output for you to use

in your programs. It can be used to turn on and off individual bits or display a

number from memory. Let’s check this out.

35

Using SETN, RSTN, and CMY

SETN – (Set Number on LCD)

Description Turns on the lower LCD line number held in ACCY

Machine Code E1

Operation ACCYLCD_NUMBER

Flag 1

RSTN – (Reset Number on LCD)
Description Turns off the lower LCD line number held in ACCY

Machine Code E2

Operation ACCYCLEAR[LCD_NUMBER]

Flag 1

CMY – (Compare ACCY)
Description Compares a number to ACCY

Machine Code B

Operation n-ACCYFLAG

Flag 0 if number equals ACCY

Let’s write a program that turns on the lower numbers one at a time and then

repeats when it gets to the end.

36

Program 6: Count Using the LCD Number Output

MEM Cmd MC Comment

00 TIA 1 Load 4 into ACCA to be used by TIMER

01 5

02 TIY 9 Set ACCY to Set the first number

03 0

04 SETN E Turn on the current number

05 1

06 DLAY E Wait a bit

07 0

08 RSTN E Turn off current number

09 2

0A INCY A Increment ACCY to point to M[1]

0B CMY B Check to see if we are at the max number

0C 8

0D JMP F Not at max, jump back to display next number

0E 0

0F 4

10 JMP F At max, jump to reset ACCY to 0 and start over

11 0

12 2

Enter and run this program. You should see the numbers appear on the lower

part of the LCD display. You will see that the numbers start at the left and

increase as you move right. These are good for displaying moving displays (like

this program) or for fun games (roulette is coming later). Another option you

have for controlling this bottom line of the LCD is with the instruction NOUT.

NOUT will display the binary representation of the memory location FF on the

first four numbers and the binary value of memory location FE on the second

four as shown below:

37

Binary number 2 Binary number 1

8 4 2 1 8 4 2 1

M[FE] M[FF]

Here, the numbers start on the right (least significant digit) and get bigger as

you move to the left (most significant digit). Let’s do another program and see

how this works. Let’s make a clock.

Using NOUT and CMA

NOUT – (Number Out)

Description Displays the numbers in memory location FE and FF on
the lower LCD as two 4-bit binary numbers

Machine Code EF

Operation M[FF]M[FE]LCD_D2/LCD_D1

Flag 1

CMA – (Compare ACCA)
Description Compares a number to ACCA

Machine Code C

Operation n-ACCYFLAG

Flag 0 if number equals ACCA

Remembering back to our discussion of binary numbers we showed how our

hexadecimal numbers can all be displayed with a 4-bit binary number. So 1 is

0001, 2 is 0010, 3 is 0011, and so on. We have 8 place holders on the lower

LCD line. This space can be used to display two 4-bit numbers. When you use

the NOUT command, the value in memory location FE will be sent to the first

4-bit number (located on the right of the display, and the value in memory

location FF will be sent to the second 4-bit number (the left most 4 bits). We

will create a timer that will start counting minutes and seconds. We will use

the NOUT command to show the seconds as a two binary numbers on the

lower display, and the number of elapsed minutes on the LCD using the AO

instruction. We’ll store the minutes in M[D]. Let’s roll!

38

Program 7: A Simple Clock

MEM Cmd MC Comment

00 TIA 1 Load 4 into ACCA to be used by TIMER

01 5

02 XCH 2 Free up ACCA for use

03 TIA 1 Transfer 0 to ACCA to initialize data

04 0

05 TIY 9 Point to M[D]

06 D

07 AIM 5 Load 0 into M[D]

08 TIY 9 Point to M[E]

09 E

0A AIM 5 Load 0 into M[E]

0B TIY 9 Point to M[F]

0C F

0D AIM 5 Load 0 into M[F]

0E TIY 9 Point to M[D]

0F D

10 MIA 6 Transfer minutes into ACCA

11 AO 0 Display minutes

12 NOUT E Display seconds

13 F

14 XCH 2 Recall the Delay

15 DLAY E Insert Delay

16 0

17 XCH 2 Recall the ACCA value

18 TIY 9 Point to M[F]

19 F

1A MIA 6 Transfer M[F] to ACCA

1B AIA 3 Add 1 to the seconds

39

1C 1

1D JMP F There won’t be an overflow so just jump through

1E 2

1F 0

20 CMA C See if ACCA > 9

21 A

22 JMP F ACCA not > 9 cycle back to display new time

23 0

24 D

25 TIA 1 Seconds are >9, let ACCA = 0 and then we will add
one to M[E]

26 0

27 AIM 5 Right digit of seconds = 0

28 TIY 9 Point to M[E]

29 E

2A MIA 6 Transfer left digit of seconds into ACCA

2B AIA 3 Add 1 to the left seconds digit

2C 1

2D JMP F We are about to check if this number is 6 and then
reset it so we won’t overflow so just fall through

to next instruction
2E 3

2F 0

30 CMA C Compare left minute digit to 6

31 6

32 JMP F If it is not 6, recycle back to show the new time
value

33 0

34 D

35 TIA 1 When we hit 60 seconds, we reset the seconds
and add one to the minutes

36 0

37 AIM 5

38 TIY 9 Point to M[D]

39 D

3A MIA 6 Load M[D] into ACCA

40

3B AIA 3 Increment minutes by 1

3C 1

3D JMP F If there is an overflow, the count will automatically
roll to zero so just return to display for either

result
3E 0

3F D

40 JMP F Jump back to start next cycle

41 0

42 D

Load and run this program. You will see the bottom 8 LCD locations display

seconds, with the right 4 locations showing the binary value of the least

significant digit of seconds, and the left 4 locations showing the binary value of

most significant digit of seconds. The ACCA output will show the elapsed

minutes. If you let the counter run, when the binary value gets to 0101 1001

(binary for 59), the counter will roll over to 0000 0000 on seconds and add one

to the minute display. You just programmed a timer. Knowing how the

program used the memory to track minutes and seconds, how might you run

this program with an initial value for the timer (not start at zero)?

If you remember, we stored the seconds in M[E] and M[F], and the minutes in

M[D]. We could change the program to not initialize these locations to 0 and

before running the program, load the desired values into these memory

locations and the timer would start from these settings.

Let’s look at a quick program to demonstrate some of the pre-built sounds you

can use in your programs.

41

Using ERRS, SHTS, LNGS and ENDS

ERRS – (Error Sound)

Description Play Error sound

Machine Code E6

Operation ERRSPKR

Flag 1

SHTS – (Short Sound)
Description Play a short sound

Machine Code E7

Operation SHTSPKR

Flag 1

LNGS – (Long Sound)
Description Play a long sound

Machine Code E8

Operation LNGSPKR

Flag 1

ENDS – (End Sound)
Description Play End sound

Machine Code E9

Operation ENDSPKR

Flag 1

These instructions give you immediate access to sounds that you can use in

your programs without having to use the SOND instruction and a lot of code.

The SHTS and LNGS instructions just cause the speaker to emit a short or long

sound. You can use this to indicate different operations in your program or

use them in games. ERRS is a negative sounding set of tones. You can use this

to indicate some error (like a bad guess in a game). ENDS is a little positive

42

sounding set of tones to indicate a right choice or the end of a program. Use

these as you like in your programs. We will write a quick program that just

plays these sounds when particular keys are pressed. This will give you a

chance to hear them all and to get more practice in compare and jump

operations.

Program 8: Play Special Sounds

MEM Cmd MC Comment

00 KIA 4 Look for a key input

01 JMP F If there is no input, jump back to the start to look
again

02 0

03 0

04 CMA C Is 0 pressed?

05 0

06 JMP F 0 wasn’t pressed so jump to next check

07 0

08 E

09 SHTS E 0 was pressed so play SHTS

0A 7

0B JMP F Jump back to the start

0C 0

0D 0

0E CMA C Is 1 pressed?

0F 1

10 JMP F 1 wasn’t pressed so jump to next check

11 1

12 8

13 LNGS E Play LNGS

14 8

15 JMP F Jump back to start

16 0

43

17 0

18 CMA C Is 2 pressed?

19 2

1A JMP F 2 wasn’t pressed so jump to next check

1B 2

1C 2

1D ENDS E Play ENDS

1E 9

1F JMP F Jump back to start

20 0

21 0

22 ERRS E Default to playing ERRS

23 6

24 JMP F Jump back to start

25 0

26 0

Load and run this program. Pressing 0 will sound the Short Sound (SHTS), 1 will

sound the Long Sound (LNGS), 2 will sound the End Sound (ENDS), and any

other key will sound the Error Sound (ERRS). Play with the program to get to

know the tones and then use them in your programs.

Let’s take a short break from programming and look at how modern

programming still uses the concepts you see in our machine language

programming on our 4-bit computer.

Programming Concepts

First, let’s define and explain different levels of programming.

Machine Language

Machine language is a set of instructions that are executed directly by a

computer’s CPU. It is the lowest level of computer programming in that it

44

requires the direct manipulation of data and memory. You are programming in

machine language when you enter instructions in your computer. When you

enter 1 into a memory location or your 4-bit computer, you are telling it to

transfer the number in the following memory location into ACCA. The

computer understands this because 1 is the instruction hard-wired into the

CPU to accomplish this.

However, if you talk to a seasoned computer programmer and tell him you are

executing instruction 1, he would have no idea what that accomplishes.

Programming on the machine level creates a code that is hard to read, hard to

troubleshoot, and complicated to produce. However, it does put the user in

full control of all aspects of memory usage and program flow. But because of

the disadvantages, it is seldom used for programming. But, ultimately

whatever method you use to write the program, the program will have to be

converted to machine language because it is the only language our machine

speaks.

Assembly Language

This is a low level, symbolic code used to make writing programs easier for a

user. We have already seen this in a simple form. The machine language

instruction 1 stands for Transfer into ACCA. We have used a shorthand

expression for this called TIA. By this time, you are probably use to the

instruction and by seeing the term TIA know what it means to the computer.

By having these representative symbols, it is easier to read code, troubleshoot

problems, and explain coding to others. Many programmers will still write

some of their programs in Assembly Language because it has the advantage of

being easier to read and understand, but also has the advantage of machine

language in that it gives the user full control of the manipulation of data in the

computer. Ultimately, the assembly code must be made into machine code for

use on the computer. This is the job of an Assembler. An assembler is a

program that takes the code written in assembly language and converts it to

machine code so the computer can run it.

High Level Languages

High Level Languages are programming languages like Java, C++, Visual Basic

and others that are written in more like human language than machine

45

language. These have the advantage of being easy to read, write,

troubleshoot, and share code segments than the other languages. They

reduce many code-intensive operations to a single, simple command. Like all

programming, high level code must be translated into machine language to

run on a computer. This is the job of the Compiler. A compiler is a program

that takes the high level code (often called source code) and converts it to

machine code (often called object code). One of the major advantages of high

level languages is that they can be programs written independent of the type

of computer that they will eventually run on. C++ is a highly structured

language. I can write a program in C++ and then use a compiler to allow it to

be run on a Personal Computer. I can then take the same C++ code, run it

through a different compiler and run it on a cell phone. In each case, you just

need the right compiler to transform your code for the specific platform you

want to run it on.

Computer Language Example

Let’s look at a really simple program to see the differences in these languages.

Let’s write a program to put the number 5 in a memory location, and then

output the value of 4 added to that memory to a display. We’ll start with the

high level language. We’ll use a language called Basic.

A=5

Print A+4

Yep, that is it; two lines of code. The first line (A=5) establishes a memory

location and gives it a name of ‘A’ so it can be referenced by that name in our

program. It also assigns that memory location the value 5. The next line adds 4

to the value at A and prints it to a screen. You can see how the code is very

readable and can be understood quickly. Let’s look at what it would look like

in assembly language.

46

TIY 0

TIA 5

AIM

TIA 4

M+

JMP 0B

AO

This is the kind of programming you have been doing. You can see that this

program accomplishes the same thing, but is a little longer and a little harder

to understand. We can see the first line (TIY 0) loads ACCY with 0 so we can

point to a memory location. We then load ACCA with 5 (TIA 5) and then place

that (AIM) in M[0]. We then transfer 4 into ACCA (TIA 4) and then add (M+)

the number in M[0] to it. We add the Jump command (JMP 0B) in case of an

overflow condition. Finally, we output this value to the display (AO). Because

the instructions are represented with symbols, we can still follow what is

going on, but it is more difficult than the Basic program. Finally, let’s look at

this in machine code. You have done this when you converted the assembly

symbols into machine instructions.

9 0 1 5 5 1 4 7 F 0 B 0

This is the program that the computer will actually run. If you handed this to a

programmer, she wouldn’t know what to make of it. You can see, the closer

we get to the language the computer understands, the less we can easily read

it. Let’s continue exploring our computer.

47

Using RAND, ASC1, and ASC2

RAND – (Random Number)

Description Loads a random number from 0 to F into ACCA

Machine Code EE

Operation RANDACCA

Flag 1

RAND loads a random number into ACCA. We can use it for games, lighting

displays, all sorts of things we want to program. We’ll use this in a guessing

game.

ASC1 – (ASCII1 out to LCD)

Description Displays ASCII characters in M[0]-M[7] to LCD

Machine Code EB

Operation ASCII(M[0]-M[7])LCD

Flag 1

ASC2 – (ASCII2 out to LCD)

Description Displays ASCII characters in M[8]-M[F] to LCD

Machine Code EC

Operation ASCII(M[8]-M[F])LCD

Flag 1

Ever wonder how we decided to take 1’s and 0’s and have computers

interface with humans. We use a translator to convert numbers to letter so

computers can display words to use. The most widely used standard for this

translation is what is known as American Standard Code for Information

Interchange or ASCII. This is a table of alphanumeric and other symbols with

an associated number for each. We use these numbers to tell the computer

what letters we want. An ASCII table can be found in Appendix A. What ASC1

and ASC2 do is take 4 sets of hex numbers stored in memory and present

48

them as their ASCII characters on the LCD. This allows us to have simple 4

letter words in our program. By using memory for storing these words, we

save a lot of programming time by having to load each memory location

individually, but we have to remember to set these memory locations with the

correct values before we run the program. To complicate things further, we

need to use one memory location for holding the secret number in our

guessing game while we use the ACCA to get your guess so we will need to

keep this in mind. Let’s look at how to use our resources to accomplish this.

We need to display the words “Low” and “High” during the game. Since “Low”

has three letters, we can use memory location zero (M[0]) to hold the secret

number, making sure that we save this value and set the memory location to

display a space when we need to show the text “Low.” For the correct guess,

we can load the text “Yes!” into memory and display it. Finally, we will load

the ASCII values of the text into memory before we run the program to

prevent having to do this during program run time which would significantly

lengthen the code. Let’s get programming. This is a long program so take your

time entering it.

Program 9: Guessing Game

MEM Cmd MC Comment

00 RAND E Put secret number into ACCA

01 E

02 TIY 9 Have ACCY point to M[0]

03 0

04 AIM 5 Load our secret number into M[0]

05 KIA 4 Wait for the user to enter a guess

06 JMP F

07 0

08 5

09 M- 8 Subtract the secret number from the guess

0A JMP F If there is no overflow, the guess was bigger than or
equal to the secret number. Jump to code to handle

each case.
0B 1

0C 9

49

0D MIA 6 If you are here, guess was too low. Transfer the secret
number into ACCA and then XCH so it is kept safe in

ACCB.
0E XCH 2

0F TIA 1 Now we need to load a 2 into M[0] so it will complete
the ASCII code for a space (20) so we can display “Low”

on the LCD.
10 2

11 AIM 5 Do the transfer

12 ASC1 E Print “Low” to the LCD

13 B

14 XCH 2 Now we need to put the secret number back. XCH to
get it back into ACCA and store it in M[0].

15 AIM 5

16 JMP F Jump back to get another number from the user.

17 0

18 5

19 CMA C You are here because the guess was either equal to or
higher than the secret number. Let’s check for the

equal first. That would mean that the M- command
resulted in a zero left in ACCA.

1A 0

1B JMP F It is not zero, so jump to display “High.”

1C 4

1D 5

1E TIY 9 If you are here, the user guessed the secret number
and the game is over. There is just one more thing to
do. We need to load “Yes!” into memory so we can

display this text with our ASC2 command. This whole
block will just alternately load the ASCII code into

ACCA and then into memory. It will then move to the
next memory location and repeat until all the text is

ready. Then we call ASC2 to display it on the LCD.

1F 8

20 TIA 1

21 5

22 AIM 5

23 INCY A

24 TIA 1

25 9

26 AIM 5

27 INCY A

28 TIA 1

29 6

50

2A AIM 5

2B INCY A

2C TIA 1

2D 5

2E AIM 5

2F INCY A

30 TIA 1

31 7

32 AIM 5

33 INCY A

34 TIA 1

35 3

36 AIM 5

37 INCY A

38 TIA 1

39 2

3A AIM 5

3B AIM 5

3C INCY A

3D TIA 1

3E 1

3F AIM 5

40 ASC2 E Whew. That was a lot of code to load 8 numbers in
memory but it is done. Display the result.

41 C

42 JMP F The game is over so just entering an endless loop and
wait for the user to press reset.

43 4

44 2

45 ASC2 E If you are here, the guess was too high. Display the
“High” text to the user.

46 C

47 JMP F Jump back to get another guess from the user.

48 0

51

49 5

Wow, that was a lot of code! After you enter this, I recommend that you verify

the code by hitting RST and then INCR through the program to check the

memory locations match the ones in the table above. This is always a good

thing to do before you run a program. It is a painful lesson to take a lot of time

to enter a program, only to run it and have it lock up. Sometimes the only way

to recover is to reset and lose all of the work you have done. It is good to save

frequently while programming.

We have one more thing to do before we play our game. We have to load the

text “Low” and “High” into memory. Go to address F0 and enter the following:

Memory
Location

Value ASCII Character

F0 2
“space”

F1 0

F2 4
L

F3 C

F4 6
o

F5 F

F6 7
w

F7 7

F8 4
H

F9 8

FA 6
i

FB 9

FC 6
g

FD 7

FE 6
h

FF 8

52

Now would be a great time to save this program. Save it into one of the

memory locations by entering FUNC 4 for memory bank 1 or FUNC 6 for

memory bank 2.

Now, run the program. The program will wait for you to enter a guess. When

you do, it will tell you whether you are too low or high, or will display “Yes!”

when you are correct. When you are done with the game, the memory

locations M[7]-M[F] do not have the correct text in them (they have “Yes!”

instead of “High”). If you want to play again, you will need to reload those

memory locations with the correct text. Now aren’t you glad you saved the

program? When you save, not only is the program data saved but the user

memory is saved too. Just reload (FUNC 5 or 7) the program and run it again.

Using SHFT AND CLRA

SHFT – (Shift ACCA)

Description Shift the binary bits stored in ACCA one place to the Right

Machine Code D

Operation ACCA/2ACCA

Flag 0 if a 1 is shifted out

This SHFT function operates on the binary value stored in ACCA. It shifts all of

the ones and zeros to the right one place. So the value A, which is 1010 in

binary, when shifted will be 0101. We move all of the digits one place to the

right and insert a zero in the left most digit. If the digit that is shifted out to

the right is a 0, the Flag remains at 1. If the digit shifted out is a 1, the Flag is

set to 0. There are a couple of things going on here. If you look at our original

number A (1010) and the final number after the shift 5 (0101), you can see

that the shifting operation has divided the original number by two. This is the

same thing we do when we move the decimal point of a number. Moving the

decimal point to the left and right in base 10 causes us to multiply or divide by

10. When we do this in binary, we multiply or divide by 2. So we could use this

instruction to divide a number by two.

53

The other thing to note is our Flag. If the number shifted out is a 0, the Flag is

1 and if the number shifted out is a 1, the Flag is set to zero. This right most

digit is our one’s place, so if we shift out a 1, the original number must have

been odd. If we shift out a 0, the original number must have been even. So the

flag will indicate if the number is odd or even. We will use this in our program.

CLRA – (Clear ASCII)

Description Clear the LCD of any ASCII out text

Machine Code ED

Operation clearLCD ASCII

Flag 1

Let’s use these instructions in a program that will display whether a key we

press is odd or even.

Program 10: Odd or Even

MEM Cmd MC Comment

00 KIA 4

Wait for user input
01 JMP F

02 0

03 0

04 SHFT D Shift ACCA Right

05 JMP F
The Flag is 0 so the number is even. Jump to display

“Even”
06 0

07 D

08 ASC1 E
Display “Odd”

09 B

0A JMP F
Jump to our subroutine that handles the delay and screen

clear
0B 0

0C F

0D ASC2 E
Display “Even”

0E C

54

0F TIA 1
Enter a value for the DLAY routine

10 5

11 DLAY E
Wait a bit

12 0

13 CLRA E
Clear the LCD

14 D

15 JMP F

Go back and get another number 16 0

17 0

Let’s load our text into memory as before.

Memory
Location

Value ASCII Character

F0 4
O

F1 F

F2 6
d

F3 4

F4 6
d

F5 4

F6 2
“space”

F7 0

F8 4
E

F9 5

FA 7
v

FB 6

FC 6
e

FD 5

FE 6
n

FF E

55

Now when you run this program, you will see the computer waiting for input.

When you press a key, the output will show either “Odd” or “Even” for a short

time and then the screen will clear.

Using CMPL and RSTO

CMPL – (Compliment ACCA)

Description Take the compliment of ACCA

Machine Code E4

Operation F-ACCAACCA

Flag 1

RSTO – (Reset Output)

Description Reset the LCD Output

Machine Code E3

Operation clearAO

Flag 1

The compliment of a binary number is when you make all of the 1’s zeros and

all of the 0’s ones. So 0110 becomes 1001. This gives the same result as if you

subtract ACCA from 15.

RSTO is a reset to erase the data printed by AO.

Let’s use these in a quick program to display the compliment of a user input

for a short time.

Program 11: The Compliment of an Input

MEM Cmd MC Comment

00 KIA 4

Wait for user input
01 JMP F

02 0

03 0

56

04 CMPL E
Compliment ACCA

05 4

06 AO 0 Display ACCA

07 TIA 1

Delay a bit
08 5

09 DLAY E

0A 0

0B RSTO E
Clear the Display

0C 3

0D JMP F

Go back to get another user input 0E 0

0F 0

Load and run this program. When you press a key, the computer displays the

compliment of the number for a short time and then clears the display.

Using CHNG

CHNG – (Exchange Accumulators)

Description Swap all accumulators with temporary accumulators

Machine Code EA

Operation AA’ BB’ YY’ ZZ’

Flag 1

If you want to see this instruction in action, look at Sample Program 5

(Roulette). We use this when we need for memory manipulation intensive

programs. Executing this instruction will swap all accumulators (ACCA, ACCB,

ACCY, and ACCZ) with temporary alternate memory locations. This allows you

to have two complete sets of accumulators so you can do operations on

memory, and then shift to the alternate set to free the accumulators to do

keyboard and display operations, and then shift back to your memory

operations. This way you don’t need to store a lot of data between shifts.

57

That is all of the instructions.

Well done. You now have everything you need to do your own programming

with your computer.

Now, let’s look at an example of how to take an idea and turn it into a

program.

58

Section 3: Writing Programs

It is one thing to enter a program that someone else wrote. It is another to

actually generate programs yourself. But, the real fun of computers is their

versatility. If there is something you need the computer to do, you can

program it to do that. Computer programming is a huge and complex topic.

There are many techniques and strategies for coming up with reliable and

reusable code. We are going to just touch the surface of this topic.

Let’s start at the beginning.

The Concept

The first thing you need is an idea. Let’s look at the following scenario: You

want to play a game that you found in your closet, but you cannot find the die

that is required to roll in the game to generate a random number from 1 to 6.

That is when you remember that your computer can generate random

numbers. You get the idea that you could write a program to act as the die in

your game. You envision the computer waiting for you to press a key, and then

the computer displaying a random number from 1 to 6, and then waiting for

another key press. Congratulations, you have your concept.

Now you need to start taking the idea from human language to computer

language.

Section

3

59

The Outline

Now start to convert your concept into a structured outline. This is a simple

way to start moving from the unstructured creative thinking to more logical

steps to accomplish the concept.

Let’s break the concept down into major functional blocks:

1. Have the computer select a random number.

2. Ensure that number is from 1 to 6.

3. Wait for the user to hit a key.

4. When the user hits a key, display the number.

5. Jump back to start again.

This looks really simple, but it is what we need to collect our thoughts into

logical steps.

Resource Allocation

Now that we have a layout, we can start to determine what resources we will

need in the computer. Let’s formalize this structure by laying out

requirements and constraints:

1. We need a place to hold the random number.

2. We cannot use ACCA because it will receive input from the key press

and overwrite the number.

3. We need some part of the display for the output.

These points are starting to solidify the decisions that have to be made in our

programming. For instance, I can use ACCB to temporarily hold the number

using XCH while I wait for the key press from KIA. Alternately, I could decide

to use a memory location. Either is straight forward, but you can see, each

uses a different resource in the computer. If part of our concept included

printing text to the screen, we would probably opt for the XCH option with

ACCB so we could leave the memory free to output text with ASC1 and ASC2.

60

Also, using a memory location will require the use of ACCY to point to the

desired location.

So let’s make those decisions and solidify our resource usage.

1. We will use M[0], and by necessity ACCY as the pointer to hold the

secret number.

2. We will output using AO to the LCD display

Alright, with our resources determined, we can start to build our program.

Flow Chart

Let’s now shift to a time honored way of organizing our resources and concept

into a logical sequence of events. Flow charts are great for this. A flow chart is

just a graphical representation of the flow of logic and instructions in a

computer program. It will be what we use to actually produce our code. Let’s

look at how it might be laid out.

61

Flowcharts often begin with a Terminator (a

block that starts or stops a process). Let’s use

one that says “START” to begin our design.

This is a Process block. It is used for things that

need to be done. We will use this block to

setup our initial conditions. Let’s make sure

ACCY is pointing to the memory location we

want to use to store the number.

Here is where we start the main part of our

program. We load a random number into

ACCA. This number will be from 0 to 15, so we

need to do some work to get it in the range we

want.

Now we come to a Decision block. The

Decision block tests a condition and then sends

us off in the direction of the answer. We need

a number with 6 possibilities. That means our

number should be from 0 to 5. If it is too big,

go back and get another.

If we got here, it is because our number is

from 0 to 5. Let’s add 1 to get it into the range

we need.

Now that we have a good number, let’s look

for the keypress. If we don’t get it, circle back

until we do.

That should be it. Display the number and

head back in our flowchart to where we get

another number.

Now that we have our logic all laid out, let’s turn this flowchart into code.

Initialize

ACCY to point

at M[0]

START

Load ACCA with

a random

number

Is ACCA

<6?

Add 1 to

ACCY

NO

YES

Keypress?

NO

Display the Number

YES

62

Assemble the Program

We will now convert the blocks in our flowchart to

Assembly language.

TIY 0
This gives ACCY the value it needs.

RAND
This loads the random number.

Store this number and then check if it is too big.
AIM
AIA A
FLAG=1 JMP ahead
FLAG=0 JMP back to RAND
Here, we are adding 10 to ACCA and looking for
overflow. If it overflows, the number was too big
so we go back to get another. If not jump to the
next command. We don’t know the address of
ahead and back yet. We’ll fill that in later.

The number is good. Get the original back.
MIA
AIA 1

KIA
JMP to KIA

AO
JMP back to RAND

So the program is just about done. We just need
to assign addresses to the instructions and see
where we need to direct the jumps (JMPs).

Initialize

ACCY to point

at M[0]

START

Load ACCA with

a random

number

Is ACCA

<6?

Get number

and add 1

Keypress?

Display the Number

63

Compile the Program

Now we will compile the program. This is where we take our Assembly
language and convert it to pure Machine language.

Program 12: Computer Dice

First, copy all of the instructions from above in order into the Command

section reserving extra spaces for 2 word instructions and Jumps.

MEM Command Machine Code

00 TIY

01

02 RAND

03

04 AIM

05 AIA

06

07 JMP

08

09

0A JMP

0B

0C

0D MIA

0E AIA

0F

10 KIA

11 JMP

12

13

14 MIA

15 AO

16 JMP

17

18

Now go back and fill in the Machine language instructions and data from the
assembled flowchart.

64

MEM Command Machine Code

00 TIY 9

01 0

02 RAND E

03 E

04 AIM 5

05 AIA 3

06 A

07 JMP F

08

09

0A JMP F

0B

0C

0D MIA 6

0E AIA 3

0F 1

10 KIA 4

11 JMP F

12

13

14 MIA 6

15 AO 0

16 JMP F

17

18

The last thing to do is add the addresses of the JMPs. Use the descriptions in
the assembled code of where to jump to and then find that instruction in the
memory map and add it after the JMP. For instance, the JMP at memory
location 11 was labeled JMP to KIA. We can see that KIA is at memory location
10. So enter a 1 and then a 0 into the memory location following the JMP
command. Do this for all of the JMPs.

The final program should look like below.

MEM Command Machine Code

00 TIY 9

01 0

02 RAND E

65

03 E

04 AIM 5

05 AIA 3

06 A

07 JMP F

08 0

09 D

0A JMP F

0B 0

0C 2

0D MIA 6

0E AIA 3

0F 1

10 KIA 4

11 JMP F

12 1

13 0

14 MIA 6

15 AO 0

16 JMP F

17 0

18 2

That is it. When you run this program, the dice will “roll” as you hold down a
key and stop on a random roll when you release it.

That is the process from idea to software. At least, it is one way of doing it. For
a very simple program, you may not need to go through all of this. But as your
programs become more complex, you will find that keeping your prototype
code clean and well organized will help greatly in getting to the finish line.

I encourage you to go back and change the resource decision to use ACCB for
the number instead of M[0] and see what the advantages are.

Appendix B has a blank programming sheet that you can print out to help you
writing programs.

66

2 Last Tips

Want to know how to extend your saved memory space? You can load

multiple programs into each of your 2 memory storage locations. Just

distribute the programs throughout the entire memory space (00-EF). Then,

use the ADDR function to move the program counter to the location of a

particular program. Then just run. This way, you may have one program

loaded from 00-1F in memory, another loaded from 20-4F, and another from

50-EF. Same the whole memory space with FUNC 4 or 6. Then, when you load

that memory, ADDR to the start of the individual programs and FUNC 0 to run

it. Run always starts execution from the current program counter. That is why

we have always RSET before running a program.

Lastly, a big help in troubleshooting code is if you can walk through the

program instruction by instruction. Our computer will let you do that. Instead

of FUNC 0, use FUNC 1 and the program will step each time the INCR key is

pressed (the screen will be initially blank until you INCR for the first

instruction). The only think we need to clarify is the AO command. This

command looks for user input but falls through if there is none. This is hard to

simulate in the Run-step function since we want to test both cases; when a

key is pressed and when it is not. To do this, when you get to an AO instruction

in your code, if you hit INCR, the code will progress as though no key was

pressed. When you want to have keyboard input, and when you are at the AO

instruction, press the desired key and then INCR. This will enter your selection

into ACCA and set the FLAG to 0 so you can then jump out of the AO loop.

Conclusion

By now, you should have a solid grasp of the fundamentals of computer

structure, memory usage, instruction sets, accumulators, and memory

addressing. You should now feel like you can start writing your own programs.

Start with simple concepts and build on them. Use the examples presented to

modify them to your liking. Most of all, have fun as you continue to explore

the amazing world of the inner workings of computers.

67

Sample Programs

Here are some additional programs for you to use. Try to use the description
of the program to write your own. Then see if you used the same techniques
that the sample used. There are often a lot of ways to program the same
concept. Appendix B has some templates that you can print to make
generating the code easier.

Sample 1: Rock/Paper/Scissors

MEM Command ML MEM Command ML

00 TIY 9 1D CMA C

01 0 1E 0

02 RAND E 1F JMP F

03 E 20 2

04 AIM 5 21 5

05 AIA 3 22 JMP F

06 E 23 3

07 JMP F 24 8

08 0 25 CMA C

09 D 26 1

0A JMP F 27 JMP F

0B 0 28 3

0C 2 29 1

0D KIA 4 2A TIA 1

0E JMP F 2B 1

0F 0 2C ENDS E

10 D 2D 9

11 M- 8 2E JMP F

12 JMP F 2F 3

13 1 30 C

14 D 31 TIA 1

15 CMA C 32 2

16 E 33 ERRS E

17 JMP F 34 6

18 3 35 JMP F

19 1 36 3

1A JMP F 37 C

1B 2 38 TIA 1

1C A 39 0

68

3A SHTS E

3B 7

3C AO 0

3D TIA 1

3E 6

3F DLAY E

40 0

41 RSTO E

42 3

43 JMP F

44 0

45 2

When you select 0, 1, or 2, the program will evaluate your choice compared to
the computers, and display the results as 0 = Tie, 1 = user won, 2 = computer
won.

This program actually goes through the steps of choosing inputs and
comparing them to determine the correct outcome. If you think about it
though, if all we are doing is playing this game with the computer, we could
really just write a program to randomly generate one of the potential
outcomes of the game and then just display it.

To enhance this game, you might want to display the user’s choice and
computers choice using NOUT after the match. Experiment with modification
to the program.

69

Sample 2: Electronic Piano

 This is a simple program but is ripe for modification. Press a key and the

associated note will play. You could use this program to write a song, and then

go back to Program 5 and enter your song in memory and have the computer

play it.

MEM Command ML

00 KIA 4

01 JMP F

02 0

03 0

04 SOND E

05 5

06 JMP F

07 0

08 0

Sample 3: Centipede

This program lights the bottom row of numbers from left to right and then

clears them the same way. It simulates a centipede running across the LCD.

MEM Command ML MEM Command ML

00 TIA 1 0F 0

01 1 10 RSTN E

02 TIY 9 11 2

03 0 12 DLAY E

04 SETN E 13 0

05 1 14 INCY A

06 DLAY E 15 CMY B

07 0 16 8

08 INCY A 17 JMP F

09 CMY B 18 1

0A 8 19 0

0B JMP F 1A JMP F

0C 0 1B 0

0D 4 1C 2

0E TIY 9

70

Sample 4: Binary to Hex Practice

This program displays a random binary number on the right 4 digits of the

lower display. It then waits for you to enter the number on the keyboard. You

get the ENDS if right and the ERRS in wrong. The left 4 digits light up but are

not used. The default memory value is F, which is 1111 in binary. If you want,

load 0 into M[E] prior to running the program to make the left digits all 0. If

you like this better, modify the program to do it automatically.

MEM Command ML MEM Command ML

00 TIY 9 0E JMP F

01 F 0F 1

02 RAND E 10 6

03 E 11 ENDS E

04 AIM 5 12 9

05 NOUT E 13 JMP F

06 F 14 0

07 KIA 4 15 2

08 JMP F 16 ERRS E

09 0 17 6

0A 7 18 JMP F

0B M- 8 19 0

0C CMA C 1A 2

0D 0

71

Sample 5: Roulette

Write a program that simulates the game Roulette. Have the numbers on the

bottom of the LCD cycle and slow, and then stop on a random number.

MEM Command ML MEM Command ML

00 KIA 4 20 1

01 JMP F 21 XCH 2

02 0 22 AIA 3

03 0 23 1

04 TIY 9 24 XCH 2

05 0 25 AIA 3

06 RAND E 26 1

07 E 27 CMA C

08 SHFT D 28 3

09 AIM 5 29 JMP F

0A TIA 1 2A 0

0B 0 2B F

0C XCH 2 2C CHNG E

0D TIA 1 2D A

0E 1 2E TIY 9

0F TIY 9 2F 0

10 0 30 CHNG E

11 SETN E 31 A

12 1 32 TIY 9

13 SHTS E 33 0

14 7 34 TIA 1

15 XCH 2 35 0

16 DLAY E 36 CHNG E

17 0 37 A

18 XCH 2 38 SETN E

19 RSTN E 39 1

1A 2 3A SHTS E

1B INCY A 3B 7

1C CMY B 3C CHNG E

1D 8 3D A

1E JMP F 3E XCH 2

1F 1 3F DLAY E

72

MEM Command ML

40 0

41 XCH 2

42 M- 8

43 CMA C

44 0

45 JMP F

46 4

47 B

48 JMP F

49 5

4A 6

4B M+ 7

4C AIA 3

4D 1

4E CHNG E

4F A

50 RSTN E

51 2

52 INCY A

53 JMP F

54 3

55 8

56 ENDS E

57 9

58 KIA 4

59 JMP F

5A 5

5B 8

5C CHNG E

5D A

5E RSTN E

5F 2

60 CHNG E

61 A

62 JMP F

63 0

64 4

73

APPENDIX A: ASCII

TABLE OF CHARACTERS

HEX ASCII HEX ASCII HEX ASCII HEX ASCII

00

N
O

T U
SED

 20 Space 40 @ 60 `

01 21 ! 41 A 61 a

02 22 “ 42 B 62 b

03 23 # 43 C 63 c

04 24 $ 44 D 64 d

05 25 % 45 E 65 e

06 26 & 46 F 66 f

07 27 ‘ 47 G 67 g

08 28 (48 H 68 h

09 29) 49 I 69 i

0A 2A * 4A J 6A j

0B 2B + 4B K 6B k

0C 2C , 4C L 6C l

0D 2D - 4D M 6D m

0E 2E . 4E N 6E n

0F 2F / 4F O 6F o

10 30 0 50 P 70 p

11 31 1 51 Q 71 q

12 32 2 52 R 72 r

13 33 3 53 S 73 s

14 34 4 54 T 74 t

15 35 5 55 U 75 u

16 36 6 56 V 76 v

17 37 7 57 W 77 w

18 38 8 58 X 78 x

19 39 9 59 Y 79 y

1A 3A : 5A Z 7A z

1B 3B ; 5B [7B {

1C 3C < 5C ¥ 7C |

1D 3D = 5D] 7D }

1E 3E > 5E ^ 7E →

1F 3F ? 5F _ 7F ←

74

APPENDIX B: Program Sheet

MEM ASM ML MEM ASM ML MEM ASM ML

00 20 40

01 21 41

02 22 42

03 23 43

04 24 44

05 25 45

06 26 46

07 27 47

08 28 48

09 29 49

0A 2A 4A

0B 2B 4B

0C 2C 4C

0D 2D 4D

0E 2E 4E

0F 2F 4F

10 30 50

11 31 51

12 32 52

13 33 53

14 34 54

15 35 55

16 36 56

17 37 57

18 38 58

19 39 59

1A 3A 5A

1B 3B 5B

1C 3C 5C

1D 3D 5D

1E 3E 5E

1F 3F 5F

