User GuIDE

IDAP-Link"™
CMSIS-DAP Debug JTAG

l".’

2 -
b oy =
» . |
A - &=
P = &
» L &

“-

IRE

2 AARRARRR.
RN AS 4

[

4,2-SYST.NC

Copyright © 2015 I-SYST inc., all rights reserved.

This document may not be reproduced in any form without, express written consent from [-SYST
inc.

Limited Warranty

The IDAP-Link board is warranted against defects in materials and workmanship for a period of
90 days from the date of purchase from I-SYST inc. or from an authorized dealer.

Disclaimer

I-SYST inc. reserves the right to change this product without prior notice. Information furnished
by I-SYST inc. is believed to be accurate and reliable. However, no responsibility is assumed by
I-SYST inc for its use; nor for any infringement of patents nor other rights of third parties which
may result from its use. No license is granted by implication or otherwise under the patent rights
of I-SYST inc.

In no event shall I-SYST inc. be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages (including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused and on any theory of
liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in
any way out of the use of I-SYST inc. hardware and software, even if advised of the possibility of
such damage.

I-SYST inc. products are not designed for use in life support appliances, devices, or systems where
malfunction of these products can reasonably be expected to result in personal injury.

I-SYST inc. customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify I-SYST inc. for any damages resulting from such improper
use or sale.

ATTENTION

ESD sensitive devices

Observe precautions for handling
electrostatic discharge
sensitive devices

IDAP-Link™ CMSIS-DAP debug JTAG

Table of Contents

110 [7 Lo 1 [0 o J5 O 2
FFALUIES ...ttt e e et e ettt et e e e e e e e e e e e e e rataaaaaaann 2
(00 1 1 1= o2 (o =3O 3
P1 = IDAP-LINK CONNECION ...ttt e e e e e e et s ettt e aaaaaaaeas 3
CONNECEING 10 TAIGEOL.......cc.eeeeeeeeee ettt ettt 3
P2 — ARM Coresight 10 PiNS CONNECION...........ccoveeieiiiieee e 4
P3 — IDAP-LINk COre SWD CONNECIOL............ueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeee e e e eeeeeeetsssaeaeaeaens 4
B0/ (] 1 L= 5
Y) o o o101 7/ ad (0o I 11 ¢ U PR 5
S2 = IDAP-LINK RESEL...........eeeeeeeeeeeeeeeeeeeeeeee et nannnaes 5
S3 — Target NArdWare RESE.............cceee ittt 5
Windows CDC driver installation....................uueeeeeeeeeemmeeeeusssssssssesssennnnnnns 6
IDAP-LinkTM Firmware Update..............cooueemmemmmemmmemmmemmmemmmmmmmmmmmmmmmmmmmmnnnes 8
Eclipse Development Evironment.................ooueeeeeereemeecieiieescessnensssssnnnnns 8
OpeNOCD With MUIL-DOGIT..............oeeeeeeeeee ettt e e e e e e srea e e e seaa e e 9
Target Flash programming with microSD................coueereemmeemreeereennnennnns 10
Parallel Flashing Nordic nRF5x using multiple IDAP-Link™............... 11
Creating custom target cOre SUPPOIL............oooeeeeeeeeeemeessesssssssesssennsnnnnes 12
Target FIash Programiming.............c.coeceeoiueeeeei ettt 12

Updated Nov. 2016 Page 1

IDAP-Link™ CMSIS-DAP debug JTAG

Introduction

The IDAP-Link™ is a low cost CMSIS-DAP JTAG debug probe with enhanced features. It can do
more with it than just debugging. It will appears as a USB disk drive. This allows firmware
flashing easily by copying the firmware file over without requiring any special flashing software
and work instantly with any operating system. It provides a UART to USB bridge for
communication between the target device and the PC. It also provides a regulated 3.3V to directly
power the target device without addition power source by taking advantage of the USB power
source. These feature turn the target device into mBed enable. It can be used as an ultra low cost
solution to production programming. BSP is provide for use with Open Source CMSIS-DAP
firmware from mBed.org which make it totally customizable.

Features :

— Support both SWD & JTAG mode

— Debug compatibility with most IDE such as Keil, CrossWorks, Eclipse, etc..
— Onboard 3.3V regulator to power the target device

— UART to USB bridge for communication between target and PC

— mBed enabled target board

— Firmware flashing by drag & drop simply by copying file over

— micro-SD slot for flash programming without a PC

— BSP is provided for Open Source CMSIS-DAP firmware from mBed.org

Target IDAP-Link™
16 pins connector
| Tvee:1 | 2: SWDIO/TMS]
| GND:3 | 4: SWCLKITCK]
| Tour:s|e:ToI |
| TRST#:7]8:sworrpo
|
|
|
|

GND:9 H 10 : RESET#

GND:13 | 14:33v
T_RTS:15 | 16:T_CTS

Target "CGI’-éS.i_’ghI 10
connector
Fig. 1: IDAP-Link™ Rev. 3

|
|
TIXD:11 [12: TRXD |
|
|

Updated Nov. 2016 Page 2

IDAP-Link™ CMSIS-DAP debug JTAG

Connectors

SWCLK/TCK

P1 - IDAP-Link connector

The connector P1 is the IDAP-Link™ target connector.

TVCC| 1 | 2 |SWDIO/TMS
GND| 3 | 4 |SWCLK/TCK
GND| 5 | 6 |TDI

TRST| 7 | 8 |SWO/TDO
GND| 9 | 10 |RESET

T TXD| 11 | 12 |T_RXD
GND| 13 | 14 |33V

PI1 — IDAP-Link™ 14 pins connector

Starting revision 3, the connector P1 is 16 pins

TVCC| 1 | 2 |SWDIO/TMS
GND| 3 | 4 |SWCLK/TCK
TOUT 5 | 6 |TDI

TRST| 7 | 8 |SWO/TDO
GND| 9 | 10 |RESET

T TXD| 11 | 12 |T RXD
GND| 13 | 14 |33V

T RTS| 15 | 16 |T_CTS

Connecting to target

PI1 — IDAP-Link™ 16 pins connector

TVCC : Target Vce. Coming from the target device.
SWDIO/TMS, SWCLK/TCK : SWD connections.
SWDIO/TMS, SWCLK/TCK, TDI, TRST, SWO/TDO: JTAG connections

3.3V: This the 3.3V supply output from the IDAP-Link. This can be used to power target board.
T_TXD, T_RXD, T_RTS, T_CTS: UART connections

T_OUT : Digital I/O output reserved for future use

GND: Digital signal ground.

SWD mode connection to target requires the following pins :

JTAG mode connection to target requires at least these pins :
SWCLK/TCK, TDI, TDO. TRST is optional

TVCC, GND, SWDIO/TMS,

TVCC, GND, SWDIO/TMS,

Updated Nov. 2016

Page 3

IDAP-Link™ CMSIS-DAP debug JTAG

Pin1:3.3V
Pin 2 : GND
Pin 3 : SWDIO
Pin 4 : SWCLK

P2 — ARM Coresight 10 pins connector

P3 — IDAP-Link core SWD connector

The P2 is the ARM standard 1.27mm pitch 10 pins CoreSight connector.

Cortex Debug
10-pin Connector
ver 1|][] |2 i TMS
GHD 3 |:| |:| 4 ITCH
swe s (O] [|e 1T
KEY 7 |:| B T
onoostec: 3| [][] |10 nreser

The P3 is the SWD port for programming firmware upgrade of the IDAP-Link.

UART bridge : Connect T TXD to UART TXD on target, T RXD to UART RXD, T RTS to
UART RTS, T _CTS to UART CTS on target and GND

Updated Nov. 2016

Page 4

IDAP-Link™ CMSIS-DAP debug JTAG

Switches

S1 - ISP boot/Program

This button is used to put the IDAP-Link into ISP bootloader for firmware update. Keep this
button press during power up.

When the IDAP-Link is power up without connecting to PC, this button is used to activate
programming target with firmware load from the microSD card.

S2 — IDAP-Link Reset

This button will reset the IDAP-Link board. To put the IDAP-Link in bootloader for firmware
update. Press this reset button with the S1 (ISP) button, release S2 while keeping S1 pressed for 3
sec.

S3 — Target hardware Reset

This button is connected to the target reset pin. Pressing this button will reset target if the target
has reset pin connected to the JTAG/SWD connector (P1 or P2)

Updated Nov. 2016 Page 5

IDAP-Link™ CMSIS-DAP debug JTAG

Windows CDC driver installation

Windows 10 can now automatically detect and install CDC device without requiring to external
drivers. Other Windows versions are unable to automatically install CDC driver. Follows these
steps for manual driver installation.

Download the Windows driver and software from
http://sourceforge.net/projects/idaplinkfirmware/files/?source=navbar

Install the driver .inf file by right-clicking on the .inf file then select “install” from the popup
menu

- e n T —— BN

D5 _Store 8/10/2015 8:01 P DS_STORE File

ol 1-5¥ST.cer 8/10/2015 759 PM Security Certifi

=4 i-syst_cdc.cat 2M11/2015 3:21 AM Security Catalc

d [-5Y5T_CDC.inf e - |

! |-5YST_CDC Signe{ OPen (z

signcdc.bat Install cl
Print

Locate the Install the CDC device from the Windows “Device Manager”. Right-click and select
update driver...

Select “Browse my computer..”

B Local Users and Groups B Display adaptens
» (i) Perfarmance & DVD/CD-ROM drives
=y Mevice Manager 2 Fleppy disk drives
v 5 Storage i Flappy drive cantroflers
iz Disk Management ~ [Human Interface Devices
T'J Services and Applcstions e S
*
I Updste Drives Software - USB Sedisl Device (COME)
3
A How do you want to search for driver sofoware?
5
— Search automatically for updated driver software
Wi cormguler tesmiel for the | e
T8, UniEss you ve disablad this fasture in your devic
A
i=3 Browse my computer for driver software
Laocate and install divver software manually.
'
Cancel
=
i UEE Composite Device
¥ USE Composite Device

Updated Nov. 2016 Page 6

IDAP-Link™ CMSIS-DAP debug JTAG

Select “Let me pick from a list...”

< TR LN celinet oo ddefimed deiee |
& || Update Driver Software - USE Serial Device (COME)

Browse for driver software on your computer

Search for driver software in this location:

| Whac\Home\Documents w~ Browse...

[Include subfolders

PRV VIRV IEVINVIRVIRVIRY.

i=> Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category as the device.

CVvVYYYY Yy

b4 . .
i USE Composite Device |

Uncheck the “Show compatible hardware” checkbox. Then locate “I-SYST inc.” from the
Manufacturer list to install the driver

€ || Update Driver Software - USB Serial Device (COME)

Select the device driver you want to install for this hardware.

Select the manufacturer and model of your hardware device and then click Mext. If you have a

7 disk that contains the driver you want to install, click Have Disk.

e

[]5how compatible hardware

Manufacturer ~ 1 Madel

Hewlett Packard |-S¥ST CDC-ACM Serial Port Version: 1.0.0.0 [7/1/2015]
I-S¥ST CDC-ACM Serial Port Version: 10.0.0.0 [7/1/2012]

Lava Computer MFG Inc.

e
£ >

/b, This driver is not digitally signed! Have Disk...

Tell me why driver signing is important

Updated Nov. 2016 Page 7

IDAP-Link™ CMSIS-DAP debug JTAG

IDAP-Link™ Firmware Update

Boot the IDAP-Link into ISP mode by pressing the S1 (ISP) button and the S2 (RESET) at the
same time. Release S2 while keeping the S1 pressed for about 3 sec. The IDAP-Link will appear
to the PC as a removable disk with volume name 'CRP DISABLD'. Copy the new firmware.bin
over to replace the old one. On Windows 8, the old firmware.bin must be deleted before copying
the new one over.

Note : This process seem not to work on OSX due to NXP ROM firmware bug. In order to update
firmware on OSX. A shell cp command is required.

cp firmware.bin "/Volumes/CRP DISABLD"

Eclipse Development Evironment

The OpenOCD version 0.9 or above is required to use with Eclipse IDE. For Eclipse
setup, follow the blog site http://embeddedsoftdev.blogspot.ca/p/eclipse.html. To enable
debugging in Eclipse, select the menu Run/Debug Configuration. A popup as bellow will appear.
Then create new GDB OpenOCD debugging configuration.

eCe Debug Cenfigurations

Create, manage, and run configurations

= :=:‘->v Configure launch settings from this dialog:
New launch configuration Q - Press the 'New' button to create a configuration of the selected type.
[E]c/C++ Application =| - Press the 'Duplicate’ button to copy the selected configuration.

E C/C++ Attach to Application
EC;"CH Postmortem Debugger
EC;"CH Remote Application
[|GDB Hardware Debugging

- Edit or view an existing configuration by selecting it.
EGDB SEGGER J-Link Debugging
= Launch Group

- Press the 'Delete’ button to remowe the selected configuration.

- Press the 'Filter' button to configure filtering options.

Configure launch perspective settings from the 'Perspectives' preference page.

Filter matched 8 of 8 items

@. Close

In the OpenOCD configuration popup, select the Debugger tab to configure OpenOCD.
OpenOCD requires configuration files .cfg for the target device and the interface device. The

Updated Nov. 2016 Page 8

http://embeddedsoftdev.blogspot.ca/p/eclipse.html

IDAP-Link™ CMSIS-DAP debug JTAG

MCU being used. The picture bellow shows configuration example for the nRF51 series.

E)ebug Configurations.

Create, manage, and run configurations

S, SR Name: | multilink_central Debug

D Main ﬁr‘* Dt_mug_fr = Startup | E # Source E Commaen
[€]C/C++ Application . : : -
E C/C++ Attach to Application
[£]GC/C++ Pestmortem Debugger Start Open0OCD locally
E C/C++ Remaote Application

OpenOCD Setup

Other options:

Commands: sot mem inaccessible-by-default off

Remote Target

EGDB Hardware Debugging Executable: ${openocd_path}/openocd Browse... Vqriab\cs. .
v GDE O OCD Deb i
I . pen ebugging GDB port: B
EBlmmr Debug
[S]1Blinky_ble Debug Telnet port: 4444
[E]multilinke_central Debug Config options: | -f interface/cmsis-dap.cig
EPefiphera\ Debug -f target/nrf51.cfg
[]uart_Ble Debug -c "omsis_dap_serial 0030415000000"
[£]GDB QEMU Debugging
v [£]GDB SEGGER J-Link Debuggi Allocate console for OpenOCD
Emuhilink central Debug J-L
[Launch Group GDB Client Setup
Executable: fgcc-arm-none-eabifbin/arm-none-eabi-gdb Browse... Vqriab\cs. .

Revert Apply
Filter matched 15 of 15 items
@l Close

interface device should be set with -f interface/cmsis-dap. The target device depends on which

OpenOCD with multi-board

the selection of the IDAP-Link with serial number '0030415000000' for the debug session.

When multiple IDAP-Links are connected to the PC, OpenOCD needs to know which is to be
used for the debug session. This can be accomplished using the OpenOCD command
'cmsis_dap_serial' to select the target board to use using its serial #. Type in the Config options
box -c “cmsis_dap_serial ###Ht###” where ##H##H## is the serial number. The image above shows

Updated Nov. 2016

Page 9

IDAP-Link™ CMSIS-DAP debug JTAG

Target Flash programming with microSD

The IDAP-Link has an onboard microSD interface. This interface allow Flash programming as
target device without requiring a PC. This is accomplished by following the procedure bellow.

Connect the IDAP-Link to PC. Run the command line IDAPSetTarget program to select
the target device. Pass the index number of the target device as argument to the
IDAPSetTarget program. Running the IDAPSetTarget without argument will display a
list of supported target device along with its index number. Once the target is
successfully programmed into the IDAP-Link, the a list of require firmware filename is
listed. This step is needed only when selecting a different target core.

Copy the the firmware files with predefined filenames onto the microSD card. The
firmware file name must be exactly the same as those listed during the target selection
step above.

Power up the IDAP-Link or press the Reset button (S2) with the microSD in the slot. The
microSD card must be inserted prior to power up the IDAP-Link otherwise it will not
switch to microSD programming mode

If the IDAP-Link is still connected to the PC. The microSD will show up. Eject it from
the PC prior to start flashing.

Press ISP/PROG button (S1) to start Flashing. The green LED will turn on or blink. The
programming status will be also be printed to the USB CDC COM port.

Once programming completed, the green LED will turns off. If programming failed, the
red LED will blink at 1 sec interval. All LED are off when programming is successful.

Updated Nov. 2016 Page 10

IDAP-Link™ CMSIS-DAP debug JTAG

Parallel Flashing Nordic nRF5x using multiple IDAP-Link™

IDAPnRFProg is a command line tool for Flashing Nordic nRF51 & nRF52 SoC. It is available
on Windows and OSX. It can flash Softdevice, Application firmware and DFU hex files all at
once without requiring to merge them first.
Flashing all 3 elements :

IDAPnRFProg softdevice.hex Blinky_ble.hex dfu_nrf51.hex
Flashing softdevice only :

IDAPnRFProg softdevice.hex
or just a test program

IDAPNRFProg Test.hex

Furthermore, IDAPnRFPRog automatically scan USB for all connected IDAP-Link and flash all
devices in parallel. It is a great tool for production programming.

Fig. 2: IDAP-Link™ Rev. 2 connected to the IBK-BLUEIO
Rev. 0. Breakout with IMM-NRF5 Ix series module

Fig. 3 IDAP-Link™ Rev. 3 connected to the IBK-BLUEIO
Rev. 1. Breakout with IMM-NRF 5x series module

Updated Nov. 2016 Page 11

IDAP-Link™ CMSIS-DAP debug JTAG

Creating custom target core support

The IDAP-Link™/M firmware is very flexible. It support dynamic target core selection. The new
target core selection is done using the IDAPSetTarget program. This program uploads target core
data into the IDAP-Link™/M board. Hence allowing target core selection without requiring a
dedicated firmware. This section will show how to create the target core data for a custom device.

Target Flash Programming

Flash programming is very dependent on the target MCU. Each manufacturer and device family
has their own way to allow programming of the device. Most devices do not allow writing to
program memory section externally but via internal firmware. Therefore a special firmware with a
few functions running of the RAM memory section to provide support for Flash programming of
the target is required. Bellow is a template to implement the functions require by IDAP-Link ™/M.
This firmware needs to be compiled as free standing position independent. The GCC compile
flags are -ffreestanding -fpie. There is no linker script needed.

/*

* Template to create

* target Flash algorithm for IDAP-Link/M

*

* NOTE : This code must be compiled in freestanding & position independent mode
* gcc flags : -ffreestanding -fpie

* linker flag : -pie

*

* Function parameters are passed via registers
* r0 : First param

* rl : 2nd param

*

*

* Copyright 2014-2016, I-SYST inc.

*/

#include <stdint.h>
#include "target_desc.h"
// Main entry breakpoint
iét main()
__asm("BKPT");

return 0;

// IDAP-Link will call this first to perform initialize and identify the target.

//

// @param pChipInfo : Pointer to buffer to be fill with CHIP_INFO data
//

// @return 0 - success

// On success buffer location is filled with CHIP_INFO data

//

int Init(CHIP_INFO *pChipInfo)

// Add code to detect and fill CHIP_INFO

return 0;
//
// Permform mass erase
//
// @return 0 - success
//

int EraseAll()

return 0;

// Erase n consecutive Flash page
/

// @param PageAddr : Start of page address. This is absolute address
// NbPage : Nb of pages to erase

// @return0 - success

int ErasePage(uint32_t PageAddr, int NbPage)
return 0;

//

// Blank check

//

// @param Addr : Start location to check
// Len : Length in bytes to check

Updated Nov. 2016 Page 12

IDAP-Link™ CMSIS-DAP debug JTAG

//

// @return-1 - success

// If failed, returns address of non blank page
//

int BlankCheck(uint32_t Addr, int32_t Len)

return -1;

// Enable direct Flash write. This is an option function to allow
// directly write to Flash without passing by Program function bellow
// If this feature is not supported, NULL must be set in TARGET DESC entry

// @param En : true - Enable write
// false - Disable write

// @return None

void DirectFlashWrite(bool En)

}

//

// Enable read back protection
//

void Protect()

// Perform write buffer to Flash. This ooperation does verify that data are written
// correctly. This function is invisible to IDAP

// @param Addr : Start address to program

// *pData : Pointer to RAM location containing data to be programmed
// Len : Number of byte to write

// bErase : True — Erase before write

// False — No Erase

// @return None

void FlashWrite(uint32_t Addr, uint8_t *pData, int32_t Len, bool bErase)

// Checksum verify
/

// @param Addr : Start address to verify
// Len : Length in byte to verify
// CheckSum: Check sum value.

// @return checksum value
// 0 - good
// x - bad checksum

int Verify(uint32_t Addr, int32_t Len, uint32_t Checksum)
{

uint32_t *p
uint32_t cs

(uint32_t*) (Addr & OXFFFFFFFC);
i

while (Len > 0)

cs += *pt++;
Len -= 4;

}

return cs + CheckSum;

// Postprocessing after programming completed. This function is optional.
// It will be called after programming completed if entry is set in the
// TARGET_DESC structure

//

// @param FIdxFlag : Indicating which file was flashed.
// Bit 0 - Set filel was flashed

// Bit 1 - Set file2 was flashed

// Bit 2 - Set file3 was flashed

// Parml-4 : 4 User defined parameters

//

// @return0 - success

//

int UserFunction(uint32_t FIdxFlag, uint32_t Parml, uint32_t Parm2, uint32_t Parm3, uint32_t Parm4)

return 0;

Updated Nov. 2016 Page 13

IDAP-Link™ CMSIS-DAP debug JTAG

Data structure defining target device

/*
File : target_desc.h

Author : Hoang Nguyen Hoan Feb. 1, 2015

Desc : This file defines data structure for the creation of target programming

algorithm to be loaded by IDAP-Link/M. It is to allow users to create
their own custom algorithm

Copyright (c) 2015, I-SYST inc., all rights reserved
For info or contributing contact : hnhoan at i-syst dot com

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ~~AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Modified by Date Description
Hoan July 3, 2016 Better support for custom algorithm.
Supports JTag interface

*/
#include <stdint.h>

#ifndef _ TARGET DESC_H_
#define _ TARGET DESC_H

#pragma pack(push, 4)

// Consecutive memory section

typedef struct _Memory Section {
uint32_t PgSize; // Page size, this is a page erase size
uint32_t TotalSize; // Total size in bytes
uint32_t StartAddr; // Mem block start address

} MEMSECT;

//typedef enum _Firmware File Type : uint8 t {
typedef enum {

FW_FTYPE_NONE,

FW_FTYPE_BIN,

FW_FTYPE HEX,
} FW_FTYPE;

// Tartget MCU max name length
#define TARGET NAME_ LEN 16

// Specialty MCUs may have multiple firmware to be
// programmed, main firmware (App) + Bootloader + Comm Stack. For example the
// Nordic nRF5x has Softdevice, main app, and DFU

#define FWFILE MAX FILE 3 // Max number of firmware supported
#define FWFILE_NAME MAX LEN 16 // Max length for firmware name
#define TARGET DESC_VERS 0x100 // Vers bit0-7 : Minor, bit8-15 : major

// This structure describes the chip variant info

// it is a variable size structure. It should normally be casted to data buffer
// containing the info

typedef struct _Silicon_Info {

uint32_t id; // Silicon Id

uint32_t Rev; // Silicon revision

uint32_t VarId; // Silicon variant id
uint32_t Package; // Package Id

uint64_t uid; // Uniq ID

char Name[20]; // Variant name

MEMSECT ProgSect; // Program memory info (Flash or RAM)
MEMSECT DataSect; // Data memory info (RAM)

} CHIP_INFO;

/*
* This structure defines the target MCU and its flash loader
*/

typedef struct _Target_ Descriptor {

uint32_t Size:16; // Length this structure sizeof (TARGET_DESC)

uint32_t Vers:16; // Version

uint32_t IdCode; // Chip IDCODE for detection

char Name [TARGET NAME LEN]; // Chip name

MEMSECT ProgSect; // Program memory section desc

MEMSECT DataSect; // Main data memory section desc

FW_FTYPE FwFType; // compiled result file type

int NbFWFiles; // Number of firmware files

char FWFileName[FWFILE_MAX_FILE][FWFILE_NAME MAX_LEN]; // Firmware file names

int DapType; // Debug interface port 1 = SWD or 2 = Jtag

int JtagIRLen; // JTag IR length in bits

uint32_t SswdCfg; // SWD config :
// Bit 0-1 : Turn around cycle (1-4 clocks).
// Bit 2 : Data on WAIT/FAULT (0 - no, 1 - yes)

uint32_t InitEntry; // Target init function

uint32_t EreaseAllEntry; // Erase All function

uint32_t EreasePageEntry; // Erase Page function

uint32_t BlankCheckEntry; // Blank check function

uint32_t DirectFlashEntry; // Enable/Disable direct flash write (optional)

uint32_t ProgramEntry; // Flash program function

uint32_t VerifyEntry; // Check sum verify function

uint32_t ProtectEntry; // Read back protection function

uint32_t UserEntry; // User defined function. If non null, it will be call
// after programming complete

uint32_t UserParam[4]; // Parameters for user defined function

Updated Nov. 2016 Page 14

IDAP-Link™ CMSIS-DAP debug JTAG

uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t

} TARGET DESC;

#pragma pack(pop)

// Break point function

// RAM target location for loader code

BrkPoint;

StackPointer; // Stack
Buffer; // Data b
BufferLen; // Data b
LoaderStart;

LoaderSize;

#endif // __ TARGET_DESC_H_

Target definition example

TARGET_DESC g_TargetData = {
// TARGET_DESC
sizeof (TARGET_DESC),
TARGET DESC_VERS,

// Size in byte of loader code

pointer
uffer
uffer length

JTAG

Data phase on

on entry

try

0xbb11477, // IDCODE
"LPC11U35", // Target name
{4096, 64*1024, 0}, // Program memory
{1, 8*1024, 0x20000000},
{0, 3}, // mBed ID
{0,}, // mBed secret code
FW_FTYPE_HEX, // Firmware type hex
1, // 2 firmware files
{

"firmware.hex",
t
1, // DAP interface 1 = SWD, 2 =
0, // JTAG IR length in bits
5, // SWD : 1 clock turn around,
0x20000001, // Init function entry
0x20000011, // EraseAll function entry
0x20000021, // ErasePage function entry
0x20000031, // BlankCheck function entry
0x20000041, // Direct write function entry
0x20000051, // Program function entry
0x20000061, // Verify function entry
NULL, // Read back protection functi
NULL, // User function entry
{0,0,0,0}, // User function parameters
0x20000071, // Main breakpoint function en
0x20020000, // Stack pointer
0x20000200, // data ram buffer
4096, // data ram length
0x20000000, // RAM location to load target algorithm code
1024 // Length of target code in by

tes

Updated Nov. 2016

Page 15

	Features :
	P1 – IDAP-Link connector
	Connecting to target
	P2 – ARM Coresight 10 pins connector
	P3 – IDAP-Link core SWD connector
	S1 – ISP boot/Program
	S2 – IDAP-Link Reset
	S3 – Target hardware Reset
	OpenOCD with multi-board
	Target Flash Programming
	Data structure defining target device

